Loughborough University
Browse
Thesis-1994-Wang.pdf (6 MB)

A study into vibrations of turbocharger blading with a lacing wire

Download (6 MB)
thesis
posted on 2012-10-23, 12:59 authored by Xu Wang
The vibration of a turbocharger blade and dynamic characteristics of bladed packets connected by a lacing wire have been studied. The study was carried out using three analytical and experimental methods. They are: Modal Testing, Electronic Speckle Pattern Interferometry (ESPD and Finite Element Analysis (FEA). Vibration modes of a turbocharger blade with aerodynamic profile, with and without a lacing wire, were identified using model blades with simplified geometry. The separation of coupled modes was achieved using ESPI tests. The modes of vibrations of bladed packets were identified. The effect of inter-blade coupling through a lacing wire is that a cluster of sub-modes are generated in bladed packets corresponding to each fundamental mode of the freestanding blade, the number of the sub-modes being equal to the number of blades in the packet. Apart from the fundamental sub-mode, the vibration of all other submodes are out of phase with different phase relations. The stiffness of the lacing wire and its location with respect to the blade make great contributions towards certain mode clusters in terms of mode shapes and natural frequencies. The nonlinearity of the stiffness of the deformed lacing wire caused by centrifugal force was established. The coupling of this non linearity with different vibration amplitudes, due to different phase relation, results in the dynamic mistuning in lacing wire stiffness. This mistuning is considered to be a major attribute in reducing the responses at resonance.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Xu Wang

Publication date

1994

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC