Loughborough University
Browse
1/1
2 files

Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements

journal contribution
posted on 2013-06-28, 11:31 authored by Kelly MorrisonKelly Morrison, A. Dupas, Y. Mudryk, V.K. Pecharsky, K.A. Gschneidner, A.D. Caplin, L.F. Cohen
We examine the character of the itinerant magnetic transition of DyCo2 by different calorimetric methods, thereby separating the heat capacity and latent heat contributions to the entropy—allowing direct comparison to other itinerant electron metamagnetic systems. The heat capacity exhibits a large λ-like peak at the ferrimagnetic ordering phase transition, a signature that is remarkably similar to La(Fe,Si)13, where it is attributed to giant spin fluctuations. Using calorimetric measurements, we also determine the point at which the phase transition ceases to be first order: the critical magnetic field, μ0Hcrit = 0.4 ± 0.1 T and temperature Tcrit = 138.5 ± 0.5 K, and we compare these values to those obtained from analysis of magnetization by application of the Shimizu inequality for itinerant electron metamagnetism. Good agreement is found between these independent measurements, thus establishing the phase diagram and critical point with some confidence. In addition, we find that the often-used Banerjee criterion may not be suitable for determination of first order behavior in itinerant magnet systems.

History

School

  • Science

Department

  • Physics

Citation

MORRISON, K. ... et al., 2013. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements. Physical Review B, 87 (13), 6pp.

Publisher

© American Physical Society

Version

  • VoR (Version of Record)

Publication date

2013

Notes

This article has been published in the journal, Physical Review B [© American Physical Society]. The definitive version is available at: http://link.aps.org/doi/10.1103/PhysRevB.87.134421

ISSN

1098-0121

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC