Loughborough University
Browse
Thesis-2013-Tailor.pdf (6.07 MB)

Automatic surface defect quantification in 3D

Download (6.07 MB)
thesis
posted on 2014-04-07, 10:38 authored by Mitul Tailor
Three-dimensional (3D) non-contact optical methods for surface inspection are of significant interest to many industrial sectors. Many aspects of manufacturing processes have become fully automated resulting in high production volumes. However, this is not necessarily the case for surface defect inspection. Existing human visual analysis of surface defects is qualitative and subject to varying interpretation. Automated 3D non-contact analysis should provide a robust and systematic quantitative approach. However, different 3D optical measurement technologies use different physical principles, interact with surfaces and defects in diverse ways, leading to variation in measurement data. Instrument s native software processing of the data may be non-traceable in nature, leading to significant uncertainty about data quantisation. Sub-millimetric level surface defect artefacts have been created using Rockwell and Vickers hardness testing equipment on various substrates. Four different non-contact surface measurement instruments (Alicona InfiniteFocus G4, Zygo NewView 5000, GFM MikroCAD Lite and Heliotis H3) have been utilized to measure different defect artefacts. The four different 3D optical instruments are evaluated by calibrated step-height created using slipgauges and reference defect artefacts. The experimental results are compared to select the most suitable instrument capable of measuring surface defects in robust manner. This research has identified a need for an automatic tool to quantify surface defect and thus a mathematical solution has been implemented for automatic defect detection and quantification (depth, area and volume) in 3D. A simulated defect softgauge with a known geometry has been developed in order to verify the implemented algorithm and provide mathematical traceability. The implemented algorithm has been identified as a traceable, highly repeatable, and high speed solution to quantify surface defect in 3D. Various industrial components with suspicious features and solder joints on PCB are measured and quantified in order to demonstrate applicability.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Mitulkumar J. Tailor

Publication date

2013

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.603013

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC