Loughborough University
Browse
Thesis-2014-Ullah.pdf (2.03 MB)

Separation of oil drops from produced water using a slotted pore membrane

Download (2.03 MB)
thesis
posted on 2014-08-27, 15:07 authored by Asmat Ullah
Microfiltration is one of the most important processes in membrane sciences that can be used for separating drops/particles above 1 µm. Depth microfiltration membranes retain drops/particles inside the surface of the membrane, the process is expensive and membranes quickly become fouled. On the other hand, surface microfiltration membranes stop drops/particles on the surface of the membrane and the process is less fouling. Higher permeate flux and lower trans-membrane pressure is obtained with a shear enhanced microfiltration technique. Production of specific size of drops and stability of the drops are very important in testing the microfiltration of crude oil drops/water emulsions. Oil drops from 1-15 µm were produced with a food blender, operated at its highest speed for the duration of 12 mins. In addition, vegetable oil drops were stabilised with 1% polyvinyl alcohol (PVA), Tween 20 and gum Arabic, stability was assessed on the basis of consistency in the size distribution and number of drops in each sample analysed at 30 mins interval. A slotted pore Nickel membrane with the slot width and slot length of 4 and 400 µm respectively has been used in the filtration experiments. The slot width to the slot length ratio (aspect ratio) of the used membrane is 100. Vibrating the membrane at various frequencies created shear rates of different intensities on the surface of the membrane. Membrane with a tubular configuration is preferred over the flat sheet because it is easy to control in-case of membrane oscillations both at lab and industrial scale. Besides this, a tubular membrane configuration provides a smaller footprint as compared to the flat sheet. The influence of applied shear rate on slots/pore blocking has been studied. Applying shear rate to the membrane reduced the blocking of the slots of the membrane; and reduction of slots blocking is a function of the applied shear rate. At higher shear rate, lower blocking of the slots of the membrane was verified by obtaining lower trans-membrane pressure for constant rate filtration. The experiments are in reasonable agreement with the theoretical blocking model. Divergence of the experimental data from the theory may be due to involvement of deforming drops in the process. During microfiltration of oil drops, the drops deform when passing through the slots or pores of the membrane. Different surfactants provided different interfacial tensions between the oil and water interface. The influence of interfacial tension on deformation of drops through the slots was studied. The higher the interfacial tension then the lower would be the deformation of drops through the slots. A mathematical model was developed based on static and drag forces acting on the drops while passing the membrane. The model predicts 100% cut-off of drops through the membrane. Satisfactory agreement of the model with the experiments shows that the concept of static and drag force can be successfully applied to the filtration of deformable drops through the slotted pore membranes. Due to the applied shear rate, inertial lift migration velocities of the drops away from the surface of the membrane were created. Inertial lift velocities are linear functions of the applied shear rate. A mathematical model was modified based on inertial lift migration velocities. The critical radius of the drops is the one above which drops cannot pass through the surface of the membrane into the permeate due to the applied shear rate and back transport. The model is used as a starting point and is an acceptable agreement with the experiment. The model can be used to predict the 100% cut-off value for oil drops filtration and a linear fit between this value and the origin on a graph of grade (or rejection) efficiency and drop size to slot width ratio was used to predict the total concentration of dispersed oil left after filtration. Hence, it is shown how it is possible to predict oil discharge concentrations when using slotted filters.

Funding

KPK University of Engineering and Technology Peshawar, Pakistan

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Publisher

© Asmat Ullah

Publication date

2014

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.617876

Language

  • en

Usage metrics

    Chemical Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC