Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs

journal contribution
posted on 2014-09-11, 13:34 authored by Adam Sharples, Darren Player, Neil MartinNeil Martin, Vivek Mudera, Claire E. Stewart, Mark LewisMark Lewis
Summary: Degeneration of skeletal muscle (SkM) with age (sarcopenia) is a major contributor to functional decline, morbidity and mortality. Methodological implications often make it difficult to embark on interventions in already frail and diseased elderly individuals. Using in vitro three-dimensional (3D) bioengineered skeletal muscle constructs that model aged phenotypes and incorporate a representative extracellular matrix (collagen), are under tension, and display morphological and transcript expression of mature skeletal muscle may more accurately characterize the SkM niche. Furthermore, an in vitro model would provide greater experimental manipulation with regard to gene, pharmacological and exercise (mechanical stretch/electrical stimulation) therapies and thus strategies for combating muscle wasting with age. The present study utilized multiple population-doubled (MPD) murine myoblasts compared with parental controls (CON), previously shown to have an aged phenotype in monolayer cultures (Sharples, 2011), seeded into 3D type I collagen matrices under uniaxial tension. 3D bioengineered constructs incorporating MPD cells had reduced myotube size and diameter vs. CON constructs. MPD constructs were characterized by reduced peak force development over 24h after cell seeding, reduced transcript expression of remodelling matrix metalloproteinases, MMP2 and MMP9, with reduced differentiation/hypertrophic potential shown by reduced IGF-I, IGF-IR, IGF-IEa, MGF mRNA. Increased IGFBP2 and myostatin in MPD vs. CON constructs also suggested impaired differentiation/reduced regenerative potential. Overall, 3D bioengineered skeletal muscle constructs represent an in vitro model of the in vivo cell niche with MPD constructs displaying similar characteristics to ageing/atrophied muscle in vivo, thus potentially providing a future test bed for therapeutic interventions to contest muscle degeneration with age. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

History

School

  • Sport, Exercise and Health Sciences

Published in

Aging Cell

Volume

11

Issue

6

Pages

986 - 995

Citation

SHARPLES, A. ... et al., 2012. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs. Aging Cell, 11 (6), pp. 986 - 995.

Publisher

© The Authors. Aging Cell © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2012

Notes

Closed access.

ISSN

1474-9718

eISSN

1474-9726

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC