Loughborough University
Browse
Chao&Das_13Aug_Revised_Cleaned.pdf (1.63 MB)

Numerical simulation of coupled cell motion and nutrient transport in NASA’s rotating bioreactor

Download (1.63 MB)
journal contribution
posted on 2014-09-16, 14:29 authored by Craig Chao, Diganta DasDiganta Das
Rotating bioreactor, such as the NASA bioreactor, which was designed by the National Aeronautics and Space Administration (NASA), USA, can be used to mimic micro-gravity conditions and simulate the effects of microgravity on cells growth. The cell growth in the bioreactor depends on the nutrient availability which in turn depends on the cell density and distribution within the bioreactor. In this work, we use a numerical model of suspended particle motion to simulate the cell motion and distribution in a specific variant of the NASA bioreactor, namely, the high aspect ratio vessel (HARV) bioreactor. The nutrient distribution in the bioreactor is simulated based on a convection-diffusion-reaction supplemented by laboratory experiments aimed at obtaining the required data. We present the modelling framework in this paper and discuss the most salient simulated results. For example, the simulation results show that the distributions of the cells in the bioreactor appear as concentric circles and that the cells density is higher in the middle of the HARV bioreactor. These cell distributions imply that they may accumulate in the middle of the bioreactor at sufficiently high cell density. The results also demonstrate that the concentration of nutrient is fairly uniform in the bioreactor but decreases slightly from the outer radius of the HARV bioreactor to the inner radius. This is possibly caused by the higher consumption of glucose due to the higher cell density in the middle of the radius. We expect that the modelling framework in this paper would help optimize the culture conditions for the cells in HARV bioreactors.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Volume

0

Pages

0 - ?

Citation

CHAO, T.-C. and DAS, D.B., 2015. Numerical simulation of coupled cell motion and nutrient transport in NASA’s rotating bioreactor. Chemical Engineering Journal, 259, pp. 961-971.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Engineering Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Journal, 259, pp. 961-971, DOI: 10.1016/j.cej.2014.08.077

ISSN

1385-8947

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC