Loughborough University
Browse
PhysRevE.90.042404.pdf (2.2 MB)

Solidification in soft-core fluids: disordered solids from fast solidification fronts

Download (2.2 MB)
journal contribution
posted on 2015-01-12, 10:28 authored by Andrew ArcherAndrew Archer, Morgan C. Walters, Uwe Thiele, Edgar Knobloch
Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model uid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the onecomponent fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

PHYSICAL REVIEW E

Volume

90

Issue

4

Pages

? - ? (16)

Citation

ARCHER, A.J. ... et al, 2014. Solidification in soft-core fluids: disordered solids from fast solidification fronts. Physical Review E, 90 (4), 16pp.

Publisher

© American Physical Society (APS)

Version

  • VoR (Version of Record)

Publication date

2014

Notes

This paper can be found at: http://dx.doi.org/10.1103/PhysRevE.90.042404

ISSN

1539-3755

eISSN

1550-2376

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC