Loughborough University
Browse
APCATB-D-14-01160R2-3.pdf (1.78 MB)

Dye-sensitized photoelectrochemical cell on plasmonic Ag/AgCl @ chiral TiO2 nanofibers for treatment of urban wastewater effluents, with simultaneous production of hydrogen and electricity

Download (1.78 MB)
journal contribution
posted on 2015-10-16, 09:50 authored by Dawei Wang, Yi Li, Gianluca Li-Puma, Chao Wang, Peifang Wang, Wenlong Zhang, Qing Wang
The feasibility of simultaneous production of hydrogen and electricity with simultaneous contaminants removal from “actual” urban wastewater within a dye-sensitized photoelectrochemical cell (DSPC) is demonstrated for the first time. The photoanode in the DSPC was a novel nanostructured plasmonic Ag/AgCl @ chiral TiO2 nanofibers (Ag and AgCl nanoparticles supported on chiral TiO2 nanofibers). The electrolyte in the DSPC was actual wastewater to which an estrogen (17-β-ethynylestradiol, EE2) and a heavy metal (Cu2+8 ) were added. The contaminants in the wastewater rather than I-/I3 - (usual electrolyte in conventional DSPCs) acted as electrons bridges for the stabilization of charges in this DSPC. Almost total removal of total organic carbon (TOC), Cu2+, EE2, and 70% removal of total nitrogen (TN) were achieved under visible-light irradiation. A relatively high solar energy conversion efficiency (PCE 3.09%) was recorded and approximately 98% of the electricity was converted to H2 after the consumption of dissolved oxygen (DO), Cu2+ and TN. This performance was attributed to the “symbiotic” relationship between the TiO2 chiral nanofibers and the plasmonic effect of Ag nanoparticles at the photoanode although Ag acting as a recombination site may hinder the generation of electricity. The dye N719 in this study exhibited a temporary sensitization effect, and a more efficient sensitizer is expected to be studied in the future. This study opens up new opportunities for producing renewable energy from wastewater treatment processes including organic and inorganic matter as viable resources.

Funding

The study was financially supported by the National Natural Science Foundation of China (No. 51322901 and No. 51479066), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51421006) and the Fundamental Research Funds for the Central Universities (No. 2014B02914 and 2014B39514).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Applied Catalysis B: Environmental

Volume

168

Pages

25 - 32

Citation

WANG, D. ...et al., 2015. Dye-sensitized photoelectrochemical cell on plasmonic Ag/AgCl @ chiral TiO2 nanofibers for treatment of urban wastewater effluents, with simultaneous production of hydrogen and electricity. Applied Catalysis B-Environmental, 168 pp. 25-32.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2014-11-08

Publication date

2014-12-04

Copyright date

2015

Notes

This paper was accepted for publication in the journal Applied Catalysis B-Environmental and the definitive published version is available at: http://dx.doi.org/10.1016/j.apcatb.2014.11.012

ISSN

0926-3373

Language

  • en