Loughborough University
Browse
Thesis-2016-Bhatti.pdf (14.64 MB)

Mechanical integration of a PEM fuel cell for a multifunctional aerospace structure

Download (14.64 MB)
thesis
posted on 2016-06-08, 10:54 authored by Wasim Bhatti
A multifunctional structural polymer electrolyte membrane (PEM) fuel cell was designed, developed and manufactured. The structural fuel cell was designed to represent the rear rib section of an aircraft wing. Custom membrane electrode assemblies (MEA s) were manufactured in house. Each MEA had an active area of 25cm2.The platinum loading on each electrode (anode and cathode) was 0.5mg/cm2. Sandwiched between the electrodes was a Nafion 212 electrolyte membrane. Additional components of the structural fuel included metallic bipolar plates and end plates. Initially all the components were manufactured from aluminium in order for the structural fuel cell to closely represent an aircraft wing rib. However due to corrosion problems the bipolar plate had to be manufactured from marine grade 361L stainless steel with a protective coating system. A number of different protective coating systems were tried with wood nickel strike, followed by a 5µm intermediate coat of silver and a 2µm gold top coat being the most successful. Full fuel cell experimental setup was developed which included balance of plant, data acquisition and control unit, and a mechanical loading assembly. Loads were applied to the structural fuel cells tip to achieve a static deflection of ±7mm and dynamic deflections of ±3mm, ±5mm, and ±7mm. Static and dynamic torsion induced 1° to 5° of twist to the structural fuel cell tip. Polarisation curves were produced for each load case. Finite element analysis was used to determine the structural fuel cell displacement, and stress / strain over the range of mechanical loads. The structural fuel cells peak power performance dropped 3.9% from 5.5 watts to 5.3 watts during static bending and 2% from 6.2 watts to 6.1 watts during static torsion. During dynamic bending (2000 cycles) the structural fuel cell peak power performance dropped 11% from 6.7 watts to 6 watts (3mm deflection at 190N), 23% from 6.3 watts to 4.8 watts (5mm deflection at 270N), and 41% from 7.2 watts to 5 watts (7mm deflection at 350N). During dynamic torsion (2000 cycles) the structural fuel cell peak power performance dropped 16% from 6 watts to 5.1 watt (3° of torsional loading), and 30% from 6.4 watts to 4.3 watts (5° of torsional loading). The simulated (finite element modelling) displacement of -6.6mm (At maximum bending load of 364.95N) was within 9% of the actual measured displacement of -7.2mm at 364.95N. Furthermore the majority of the simulated strain values were within 10% of the actual measured strain for the structural fuel cell.

Funding

EPSRC

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Publisher

© Wasim Bhatti

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en

Usage metrics

    Aeronautical and Automotive Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC