Loughborough University
Browse
Beavis_Paper-Impingement-rev28-FORMATTED-ReviewerChangesHighlighted-Round2-2.pdf (2.61 MB)

Impingement characteristics of an early injection gasoline direct injection engine: A numerical study

Download (2.61 MB)
Version 2 2021-01-29, 12:08
Version 1 2016-07-06, 10:05
journal contribution
posted on 2021-01-29, 12:08 authored by Nicholas J. Beavis, Salah Ibrahim, Weeratunge MalalasekeraWeeratunge Malalasekera
This paper describes the use of a Lagrangian discrete droplet model to evaluate the liquid fuel impingement characteristics on the internal surfaces of an early injection gasoline direct injection (GDI) engine. The study focuses on fuel impingement on the intake valve and cylinder liner between start of injection (SOI) and 20° after SOI using both a single- and multi-component fuel. The single-component fuel used was iso-octane and the multi-component fuel contained fractions of iso-pentane, iso-octane and n-decane to represent the light, medium and heavy fuel fractions of gasoline, respectively. A detailed description of the impingement and liquid film modelling approach is also provided Fuel properties, wall surface temperature and droplet Weber number and Laplace number were used to quantify the impingement regime for different fuel fractions and correlated well with the predicted onset of liquid film formation. Evidence of film stripping was seen from the liquid film formed on the side of the intake valve head with subsequent ejected droplets being a likely source of unburned hydrocarbons and particulate matter emissions. Differences in impingement location and subsequent location of liquid film formation were also observed between single- and multi-component fuels. A qualitative comparison with experimental cylinder liner impingement data showed the model to well predict the timing and positioning of the liner fuel impingement.

Funding

This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

International Journal of Engine Research

Volume

18

Issue

4

Pages

378-393

Citation

BEAVIS, N.J., IBRAHIM, S.S. and MALALASEKERA, W., 2016. The impingement characteristics of an early injection GDI engine: a numerical study. International Journal of Engine Research, 18 (4), pp. 378-393.

Publisher

© The Authors. Published by Sage.

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-07-05

Publication date

2016-08-08

Copyright date

2017

Notes

This is the accepted manuscript version of the paper.

ISSN

1468-0874

eISSN

2041-3149

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC