Loughborough University
Browse
Revised manuscript V3 (final).pdf (1.36 MB)

A new method for reconstruction of the structure of micro-packed beds of spherical particles from desktop X-ray microtomography images. Part B. Structure refinement and analysis

Download (1.36 MB)
journal contribution
posted on 2016-10-25, 09:54 authored by Moein Navvab Kashani, Vladimir Zivkovic, Hamideh Elekaei, Luis Fernand Herrera, Kathryn Affleck, Mark Biggs
© 2016 Elsevier Ltd The authors have reported elsewhere (Chem. Eng. Sci., 146, 337, 2016) a new method that derives models of micro-packed beds (μPBs) of near-spherical particles from X-ray microtomography grayscale images of limited resolution compared to the characteristics dimensions of the particles and porosity. The new method is distinguished by it not requiring a grayscale threshold to partition the images into solid and void phases, and its retention of the underlying spherical geometry, two issues that are particularly problematic when more traditional approaches are used to build models of μPBs. Here it is shown that a Reverse Monte Carlo (RMC) algorithm combined with Simulated Annealing (SA) can refine the models obtained from this new method to eliminate the vast majority of particle overlaps and incorporate particle size distributions. Application of the RMC-SA to an initial model of a μPB yielded a porosity estimate that was, within experimental uncertainty, the same as its directly measured counterpart. It was further shown that the porosity of μPBs is near unity at the bed wall and oscillates in a decaying fashion normal to the wall up to a distance of around three particle diameters into the bed. This leads to the porosity decreasing with increasing bed-to-particle diameter ratio. The opposite was observed, however, for the average number of particle-particle contacts (the mean coordination number). This latter behaviour has two origins: one in which the bulk of the bed where the coordination number is maximal and constant exerts increasing influence (volumetric origin), and one in which the packing density inherently decreases with the bed-to-particle diameter ratio (packing origin).

History

School

  • Science

Department

  • Chemistry

Published in

Chemical Engineering Science

Volume

153

Pages

434 - 443

Citation

NAVVAB KASHANI, M. ...et al., 2016. A new method for reconstruction of the structure of micro-packed beds of spherical particles from desktop X-ray microtomography images. Part B. Structure refinement and analysis. Chemical Engineering Science, 153, pp. 434-443.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This paper was accepted for publication in the journal. Chemical Engineering Science and the definitive published version is available at http://dx.doi.org/10.1016/j.ces.2016.05.036

ISSN

0009-2509

Language

  • en