Loughborough University
Browse
Manuscript unmarked.pdf (1.41 MB)

Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs

Download (1.41 MB)
journal contribution
posted on 2016-10-27, 13:46 authored by Jorge Rodriguez-Chueca, Carlos Amor, Tania Silva, Dionysios D. Dionysiou, Gianluca Li-Puma, Marco S. Lucas, Jose A. Peres
© 2016 Elsevier B.V.In this study, the effectiveness of the HSO5-/M n+/UV process on the treatment of winery wastewater (WW) was investigated. The optimal operating conditions were determined: [HSO5-]=2.5mM; [M2(SO4) n ]=1.0mM; pH=6.5 and reaction temperature=323K. Under the given conditions, 51%, 42% and 35% of COD removal was achieved using respectively Fe(II), Co(II) and Cu(II) as catalysts. Different UV sources were tested with the previously selected optimal conditions in order to increase the treatment efficiency. The highest COD removal (82%) was achieved using a UV-A LEDs system (70W/m2). These conditions were also promising for the treatment of WW with COD concentrations of 5000mg O2/L, reaching 79% and 64% of COD and TOC removal, respectively, after 180min of treatment. At 323K, the most effective treatment was obtained when Co(II) was used as catalyst (79% and 64% of COD and TOC removal), while at ambient temperature (293K) the highest COD (65%) and TOC (52%) removals were obtained with Fe(II) catalyst. Moreover, it was demonstrated that the use of HSO5-/M n+ in several consecutive doses was more efficient than adding the reagents as a single dose at the beginning of the reaction. A comparison between the performance of the HSO5-/Fe(II)/UV-A LED process and the conventional photo-Fenton demonstrated important advantages associated with the HSO5-/Fe(II)/UV-A LED process, including the absence of the costly pH adjustment and of the hydroxide ferric sludge which characterise the photo-Fenton treatment process. The HSO5-/M n+/UV-A LED process demonstrates a high COD and TOC removal efficiency, and it can be considered a promising technology for application in real scale agro-food wastewater treatment plants.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Citation

RODRIGUEZ-CHUECA, J. ...et al., 2016. Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs. Chemical Engineering Journal, 310 (2), pp. 473-483.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at http://dx.doi.org/10.1016/j.cej.2016.04.135

ISSN

1385-8947

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC