Loughborough University
Browse
charge seperation LSCF_JSKim.pdf (1.42 MB)

Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell

Download (1.42 MB)
journal contribution
posted on 2017-06-15, 09:53 authored by Bin Zhu, Baoyuan Wang, Y. Wang, Rizwan Raza, Wenyi Tan, Jung-Sik Kim, Peter A. van Aken, Peter D. Lund
Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells [1–4]. Hereby we report a semiconductor-ionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm2 at 550 °C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can characterize more accurately the buried interface between the LSCF and SCDC further reveal the properties and distribution of charge carriers in the heterostructures. This phenomenon constrains the carrier mobility and determines the charge separation and devices’ fundamental working mechanism; continued exploration of this frontier can fulfill a next generation fuel cell based on the new concept of semiconductor-ionic fuel cells (SIFCs).

Funding

This work was supported by the National Natural Science Foundation of China (Grant 51402093), Natural Science Foundation of Hubei Province, major project grant No. 2015CFA120, the Swedish Research Council (Grant No. 621-2011-4983), the European Commission FP7 TriSOFC-project (Grant No. 303454) and the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 312483 (ESTEEM2).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Nano Energy

Volume

37

Pages

195 - 202

Citation

ZHU, B. ... et al, 2017. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 37, pp. 195-202.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2017

Notes

This paper was published in the journal Nano Energy and the definitive published version is available at http://dx.doi.org/10.1016/j.nanoen.2017.05.003.

ISSN

2211-2855

Language

  • en