Loughborough University
Browse
Thesis-1991-Stennet.pdf (8.23 MB)

Normal force reduction in electronic connectors

Download (8.23 MB)
thesis
posted on 2017-06-28, 10:39 authored by Neil A. Stennett
An experimental and theoretical analysis has been carried out into normal force reduction in electronic contact springs. This is a phenomenon whereby the force produced by the contact spring reduces with time. A series of ten elevated temperature heat age tests were carried out for time periods of up to three months. Over 6,500 normal force reduction measurements have been made. Examination of the data revealed a high correlation for the normal force to exhibit a logarithmic relationship with time. Theoretical analysis showed that this could be explained by assuming that the phenomenon of normal force reduction is thermally activated with an activation energy that is variable and related to the amount of stored energy in the contact spring. A theoretical model for the process has been proposed, and the values of the parameters calculated for the ten temperatures for which data has been collected. This model can be used to predict end of life normal forces for electrical contacts, provided that the model parameters are determined experimentally at the required temperature. In addition, it is also possible to obtain confidence levels associated with these predictions.

Funding

AMP Inc. of Great Britain

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© N.A. Stennett

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

1991

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC