Loughborough University
Browse
Manuscript_Water Reasearch LUPIN.pdf (893.27 kB)

Inactivation of pathogenic microorganisms in freshwater using HSO5−/UV-A LED and HSO5−/Mn+/UV-A LED oxidation processes

Download (893.27 kB)
journal contribution
posted on 2017-07-27, 10:58 authored by Jorge Rodriguez-Chueca, Tania Silva, Jose R. Fernandes, Marco Lucas, Gianluca Li-Puma, Jose A. Peres, Ana Sampaio
Freshwater disinfection using photolytic and catalytic activation of peroxymonosulphate (PMS) through PMS/UV-A LED and PMS/Mn+/UV-A LED [Mn+ = Fe2+ or Co2+] processes was evaluated through the inactivation of three different bacteria: Escherichia coli (Gram-negative), Bacillus mycoides (sporulated Gram-positive), Staphylococcus aureus (non-sporulated Gram-positive), and the fungus Candida albicans. Photolytic and catalytic activation of PMS were effective in the total inactivation of the bacteria using 0.1 mM of PMS and Mn+ at neutral pH (6.5), with E. coli reaching the highest and the fastest inactivation yield, followed by S. aureus and B. mycoides. With B. mycoides, the oxidative stress generated through the complexity of PMS/Mn+/UV-A LED combined treatments triggered the formation of endospores. The treatment processes were also effective in the total inactivation of C. albicans, although, due to the ultrastructure, biochemistry and physiology of this yeast, higher dosages of reagents (5 mM of PMS and 2.5 mM of Mn+) were required. The rate of microbial inactivation markedly increased through catalytic activation of PMS particularly during the first 60 s of treatment. Co2+ was more effective than Fe2+ to catalyse PMS decomposition to sulphate radicals for the inactivation of S. aureus and C. albicans. The inactivation of the four microorganisms was well represented by the Hom model. The Biphasic and the Double Weibull models, which are based on the existence of two microbial sub-populations exhibiting different resistance to the treatments, also fitted the experimental results of photolytic activation of PMS.

Funding

The authors are grateful to European Investment Funds by FEDER/COMPETE/POCI (POCI-01-0145-FEDER-006958) and National Funds by FCT under the projects UID/AGR/04033/2013 and UID/QUI/00616/2013. Project INNOFOOD - INNOvation in the FOOD sector through the valorization of food and agro-food by-products -NORTE-07-0124-FEDER-0000029, Project INTERACT e Integrative Research in Environment, Agro-Chains and Technology - NORTE- 01-0145-FEDER-000017 and Project INNOVINE & WINE - Innovation Platform of Vine and Wine - NORTE-01-0145-FEDER-000038. Jorge Rodriguez-Chueca also acknowledges the funding provided by the Spanish Ministry of Economy and Competitiveness (MINECO) through the Juan de la Cierva-formacion grant (No FJCI- (2014-20195). Marco S. Lucas also acknowledges the funding provided by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 660969.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Water Research

Volume

123

Pages

113 - 123

Citation

RODRIGUEZ-CHUECA, J. ... et al, 2017. Inactivation of pathogenic microorganisms in freshwater using HSO5−/UV-A LED and HSO5−/Mn+/UV-A LED oxidation processes. Water Research, 123, pp. 113-123.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-06-07

Publication date

2017

Notes

This paper was accepted for publication in the journal Water Research and the definitive published version is available at http://dx.doi.org/10.1016/j.watres.2017.06.021

ISSN

0043-1354

eISSN

1879-2448

Language

  • en