Loughborough University
Browse
Tuorila_Qubit-Initialization_njp.Quant.Information.3.(2017).27.pdf (2.03 MB)

Efficient protocol for qubit initialization with a tunable environment

Download (2.03 MB)
journal contribution
posted on 2017-09-05, 11:03 authored by Jani Tuorila, Matti Partanen, Tapio Ala-NissilaTapio Ala-Nissila, Mikko Mottonen
We propose an efficient qubit initialization protocol based on a dissipative environment that can be dynamically adjusted. Here, the qubit is coupled to a thermal bath through a tunable harmonic oscillator. On-demand initialization is achieved by sweeping the oscillator rapidly into resonance with the qubit. This resonant coupling with the engineered environment induces fast relaxation to the ground state of the system, and a consecutive rapid sweep back to off resonance guarantees weak excess dissipation during quantum computations. We solve the corresponding quantum dynamics using a Markovian master equation for the reduced density operator of the qubit-bath system. This allows us to optimize the parameters and the initialization protocol for the qubit. Our analytical calculations show that the ground-state occupation of our system is well protected during the fast sweeps of the environmental coupling and, consequently, we obtain an estimate for the duration of our protocol by solving the transition rates between the low-energy eigenstates with the Jacobian diagonalization method. Our results suggest that the current experimental state of the art for the initialization speed of superconducting qubits at a given fidelity can be considerably improved.

Funding

This work was supported by the Academy of Finland through its Centers of Excellence Programme under grant numbers 251748 and 284621, and through grant number 305306. We also acknowledge funding from the European Research Council under Consolidator Grant number 681311 (QUESS) and from the Vilho, Yrjo, and Kalle Vaisala Foundation.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

npj Quantum Information

Volume

3

Issue

1

Citation

TOURILA, J. ...et al., 2017. Efficient protocol for qubit initialization with a tunable environment. npj Quantum Information, 3: 27.

Publisher

© the Authors. Published by the Nature Publishing Group

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2017-06-15

Publication date

2017

Notes

This is an Open Access Article. It is published by Nature Publishing Group under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

2056-6387

eISSN

2056-6387

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC