Loughborough University
Browse
Co_Culture_paper_slw_final_aeh_230113.pdf (210.35 kB)

Corneal stromal cell plasticity: in vitro regulation of cell phenotype through cell-cell interactions in a three-dimensional model

Download (210.35 kB)
journal contribution
posted on 2017-10-05, 10:22 authored by Sammy WilsonSammy Wilson, Ying Yang, Alicia J. El Haj
In vivo, epithelial cells are connected both anatomically and functionally with stromal keratocytes. Co-culturing aims at recapturing this cellular anatomy and functionality by bringing together two or more cell types within the same culture environment. Corneal stromal cells were activated to their injury phenotype (fibroblasts) and expanded before being encapsulated in type I collagen hydrogels constructs. Three different epithelial-stromal co-culture methods were then examined: epithelial explant; transwell; and the use of conditioned media. The aim was to determine whether the native, inactivated keratocyte cell phenotype could be restored in vitro. Media supplementation with transforming growth factor beta-1 (TGF-b1) was then used to determine whether the inactivated stromal cells retained their plasticity in vitro and could be re-activated to the fibroblast phenotype. Finally, media supplementation with wortmannin was used to inhibit epithelial–stromal cell interactions. Two different nondestructive techniques, spherical indentation and optical coherence tomography, were used to reveal how epithelial-stromal co-culturing with TGF-b1, and wortmannin media supplementation, respectively, affect stromal cell behavior and differentiation in terms of construct contraction and elastic modulus measurement. Cell viability, phenotype, morphology, and protein expression were investigated to corroborate our mechanical findings. It was shown that activated stromal cells could be inactivated to a keratocyte phenotype via co-culturing and that they retained their plasticity in vitro. Activated corneal stromal cells that were fibroblastic in phenotype were successfully reverted to a nonactivated keratocyte cell lineage in terms of behavior and biological properties; and then back again via TGF-b1 media supplementation. It was then revealed that epithelial–stromal interactions can be blocked via the use of wortmannin inhibition. A greater understanding of stromal–epithelial interactions and what mediates them offers great pharmacological potential in the regulation of corneal wound healing, with the potential to treat corneal diseases and injury by which such interactions are vital.

Funding

Funding from the EPSRC Doctoral Training Center (DTC) in Regenerative Medicine (Grant number EP/F/500491/1) is gratefully acknowledged.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Tissue Engineering Part A

Volume

20

Issue

1-2

Pages

225 - 238

Citation

WILSON, S., YANG, Y. and EL-HAJ, A., 2014. Corneal stromal cell plasticity: in vitro regulation of cell phenotype through cell–cell interactions in a three-dimensional model. Tissue Engineering Part A, 20 (1-2), pp.225-238.

Publisher

© Mary Ann Liebert

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

Notes

Final publication is available from Mary Ann Liebert, Inc., publishers: https://doi.org/10.1089/ten.tea.2013.0167.

ISSN

1937-3341

eISSN

1937-335X

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC