Loughborough University
Browse
Procedure to assess importance of kinetics.pdf (234.94 kB)

A procedure to assess the importance of chemical kinetics in the humic-mediated transport of radionuclides in radiological performance assessment calculations

Download (234.94 kB)
online resource
posted on 2008-02-07, 14:34 authored by Peter Ivanov, Liam G. Abrahamsen, Dean H. Farrelly, Aurelien Pitois, Peter Warwick, Nick Evans, Les Knight, Nick D. Bryan
Previous work has shown that humic substances can bind metal ions in two fractions: the exchangeable, where it is available instantaneously for reaction with other sinks (such as mineral surfaces); and the non-exchangeable, from which it may only dissociate slowly. In the absence of metal ion/humic/mineral surface ternary complexes, if the dissociation rate is slow compared to the solution residence time in the groundwater column, then metal in the non-exchangeable will have a significantly higher mobility than that in the exchangeable. The critical factor is the ratio of the non-exchangeable first order dissociation rate constant and the residence time in the groundwater column, metal ion mobility increasing with decreasing rate constant. Sorption of humic/metal complexes at mineral surfaces may reduce mobility. In addition to direct retardation, sorption also increases the residence time of the non-exchangeable fraction, giving more time for dissociation and immobilisation. The magnitude of the effect depends upon the concentrations of the mineral surface humic binding sites and the humic in solution, along with the magnitudes of the equilibrium constant and the forward and backward rate constants. The non-exchangeable dissociation reaction and the sorption reaction may be classified in terms of two Damkohler numbers, which can be used to determine the importance of chemical kinetics during transport calculations. These numbers could be used to determine when full chemical kinetic calculations are required for a reliable prediction, and when equilibrium may be assumed, or when the reactions are sufficiently slow that they may be ignored completely.

History

School

  • Science

Department

  • Chemistry

Citation

IVANOV, P. ... et al, 2006. A procedure to assess the importance of chemical kinetics in the humic-mediated transport of radionuclides in radiological performance assessment calculations. EC-FP FUNMIG IP 2nd Annual Workshop Proceedings, Stockholm, Sweden, Nov, SKB technical report TR-07-05, pp. 187-194.

Publisher

© FUNMIG

Publication date

2006

Notes

This is a conference paper

Book series

SKB technical report

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC