Loughborough University
Browse
Analytical investigations to the specimen size effect-ECF22.pdf (865.82 kB)

Analytical investigations to the specimen size effect on the shear resistance of the perfobond shear connector in the push-out test

Download (865.82 kB)
conference contribution
posted on 2019-01-10, 14:13 authored by Mohammed A. Al-Shuwaili
Perfobond shear connectors (PSCs) are widely used in steel-concrete composite structures as an available alternative to the shear studs which have a limited shear resistance, and are prone to fatigue problems. The evaluation of the structural performance of PSC ribs is mainly obtained through a destructive test known as the push-out test (POT). However, the size of the specimen in the POT is varied significantly. The main objectives of this study are (i) to examine the effect of the POT specimen size on the predicted shear resistance of the PSCs by conducting numerous numerical analyses to the design parameters that affect the shear resistance obtained from POT test. The numerical investigations were conducted utilising several empirical shear resistance equations which are originally derived from the regression analysis of the POT results. These investigations were performed on Eurocode-4 (EC-4) and British Standard-5 (BS-5) POT specimens as the size of these specimens is varied significantly. Furthermore, (ii) to quantify the scale of the influence of the design parameters in the POT on the resulting shear resistance by conducting several sensitivity numerical analyses as the design parameters have variable effects on PSCs shear resistance The results of this study suggest that the size of the POT specimen has a minor effect on the predicted shear resistance which might have the same effect on the actual shear resistance from the push-out test. In addition, the results of the sensitivity numerical analyses have shown that both the diameter of the holes and the rebars are the most influential factors on the shear resistance of the PSC, and the thickness of the connector has the least influence among the other design parameters, and the effect of the design parameters on the PSC shear resistance is varied according to the geometry of the connector. Further, a more efficient design for PSCs is presented by selecting large holes in a small number instead of small holes in a large number for the same cross-sectional area of the connector. This efficient design has the potential to increase the PSC shear resistance which directly affects the bending resistance and deflection of the composite beams that employ the perfobonds as a shear connector.

Funding

The author thanks the University of Kufa for their financial support.

History

School

  • Architecture, Building and Civil Engineering

Published in

ECF22 - Loading and Environmental effects on Structural Integrity

Volume

Structural Integrity Procedia 13

Pages

1924 - 1931 (9)

Citation

AL-SHUWAILI, M.A., 2018. Analytical investigations to the specimen size effect on the shear resistance of the perfobond shear connector in the push-out test. Procedia Structural Integrity, 13, pp. 1924 - 1931.

Publisher

© the Authors. Published by Elsevier

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2018

Notes

This paper was presented at the 22nd European Conference on Fracture ( ECF22) Loading and Environmental effects on Structural Integrity, Belgrade, Serbia, 26-31. August, 2018. This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

ISSN

2452-3216

Language

  • en

Location

Belgrade, Serbia