Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Coupled and uncoupled CFD prediction of the characteristics of jets from combustor air admission ports

journal contribution
posted on 2010-04-27, 10:48 authored by Jim McGuirk, Adrian SpencerAdrian Spencer
The paper focusses attention on alternative approaches for treating the coupling between the flow in the annulus supply ducts and the jets which enter combustor primary and dilution zones through air admission ports. Traditionally CFD predictions of combustor flows have modeled this in a very weakly coupled manner, with the port flow conditions being derived from 1D empirical correlations and used as boundary conditions for an internal-flow-only combustor CFD prediction. Recent work by the authors and others has introduced the viewpoint that fully coupled external-annulus–internal-combustor predictions is the way forward. Experimental data is gathered in the present work to quantify the strength of the interaction between annulus and core flows, which ultimately determines the jet characteristics at port exit. These data are then used to illustrate the improvement in the prediction of port exit jet characteristics which is obtained by adopting fully coupled calculations compared to the internal-flow-only approach. As a final demonstration of the importance of a fully coupled approach, isothermal calculations are presented for a single sector generic annular combustor. These show that quite different primary zone flow patterns are obtained from the two approaches, leading to considerable differences in the overall mixing pattern at combustor exit.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Citation

MCGUIRK, J.J. and SPENCER, A., 2001. Coupled and uncoupled CFD prediction of the characteristics of jets from combustor air admission ports. Journal of Engineering for Gas Turbines and Power, 123 (2), pp. 327-332

Publisher

© ASME

Version

  • NA (Not Applicable or Unknown)

Publication date

2001

Notes

This item is closed access. It is an article from the serial, Journal of Engineering for Gas Turbines and Power [© ASME ]. For more information on how to obtain this article please visit the ASME Digital Library, http://www.asmedl.org/ .

ISSN

0742-4795

Language

  • en