Noise and vibration from high-speed trains

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is the contents page and preface to the book, Noise and vibration from high-speed trains [© V. V. Krylov and Thomas Telford Limited]. The definitive version is available at: httpdx.doi.org/10.1680/navfht.29637 and further content is available from Google Books.

Metadata Record: https://dspace.lboro.ac.uk/2134/10014

Version: Published

Publisher: © V. V. Krylov and Thomas Telford Limited

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Noise and vibration from high-speed trains

Edited by

V. V. Krylov

Department of Civil and Structural Engineering
Nottingham Trent University
Contents

Preface xi

Part 1. Generation and propagation of railway noise 1

1. Theory of generation of wheel/rail rolling noise 3
 D. J. Thompson
 1.1. Introduction 3
 1.2. Wheel dynamics 6
 1.2.1. Modes of vibration of a railway wheel 6
 1.2.2. Frequency response functions 9
 1.2.3. Effects of rotation 10
 1.3. Track dynamics 11
 1.3.1. Models for track vibration 11
 1.3.2. Frequency response functions 11
 1.3.3. Propagation along the track 12
 1.3.4. Sleeper response 13
 1.3.5. Effects of preload 13
 1.4. Roughness and interaction 14
 1.4.1. Equations of wheel/rail interaction 14
 1.4.2. Contact receptances 15
 1.4.3. Wheel and rail roughness 16
 1.4.4. Roughness modification at the contact zone 17
 1.4.5. Effective damping of a rolling wheel 18
 1.5. Radiation of sound 18
 1.5.1. Radiation from the wheel 18
 1.5.2. Radiation from the rail 20
 1.5.3. Radiation from the sleepers 21
 1.5.4. Aerodynamic sources 21
 1.5.5. Contribution of various sources 22
 1.6. Validation 23
 1.6.1. Experimental set-up 23
 1.6.2. Results 23
 1.6.3. Sine wheel tests 25
 1.7. Summary 25
 1.8. References 25
2. Wheel and rail excitation from roughness

P. J. Remington

2.1. Introduction

2.2. Roughness modelling
 2.2.1. Average roughness model
 2.2.2. Distributed point-reacting spring model
 2.2.3. Full elastic-interaction model

2.3. Roughness measurement
 2.3.1. Accelerometer-based devices
 2.3.2. Displacement-based devices

2.4. Wheel and rail roughness characteristics

2.5. Controlling wheel/rail noise at the source
 2.5.1. Roughness amplitude reduction
 2.5.2. Contact stiffness reduction and contact area increase

2.6. Summary and conclusions

2.7. References

3. High-speed train noise barrier tests at reduced scale

J. D. van der Toorn

3.1. Modelling outdoor sound propagation

3.2. Scale modelling
 3.2.1. Similarity
 3.2.2. Measurable quantities
 3.2.3. Sound sources
 3.2.4. Receiver
 3.2.5. Atmospheric absorption
 3.2.6. Ground plane
 3.2.7. Barriers

3.3. Scale modelling of railway noise
 3.3.1. An acoustical 1:32 scale model of a high-speed train
 3.3.2. An acoustical 1:32 scale model of a railway track

3.4. Design of sound-absorbing barriers at a scale of 1:32
 3.4.1. Reference absorption curve
 3.4.2. Absorption extracted from excess attenuation

3.5. Barrier tests

3.6. Concluding remarks

3.7. Acknowledgements

3.8. References

4. Generic prediction models for environmental railway noise

J. J. A. van Leeuwen

4.1. Introduction

4.2. Noise indicators
 4.2.1. Annoyance
 4.2.2. The noise level and the A-frequency-weighted noise level
4.2.3. Root mean square average 86
4.2.4. The maximum sound level \(L_{A,\text{max}} \) 87
4.2.5. The long-time average sound level and the equivalent sound level 87
4.2.6. Statistical indicators 87
4.2.7. The basic indicators: \(L_{A,\text{day}} \), \(L_{A,\text{evening}} \), \(L_{A,\text{night}} \) and \(L_{A,24\text{ h}} \) 87
4.2.8. The composite indicator \(L_{\text{den}} \) 88
4.3. Background to environmental-noise predictions 88
4.3.1. Why noise predictions? 88
4.3.2. Noise predictions for where? 88
4.3.3. What do we want to calculate? 89
4.3.4. When to use prediction models 91
4.3.5. How do you provide your input? 92
4.3.6. Sequence of noise predictions 93
4.4. What is a noise prediction model? 94
4.5. Noise prediction methodology 95
4.6. Source description model 96
4.6.1. Sound radiation characteristics 98
4.7. Propagation models 98
4.7.1. Geometrical spreading 100
4.7.2. Atmospheric absorption 101
4.7.3. Absorption by the ground 101
4.7.4. Attenuation due to a barrier or another obstacle 102
4.7.5. Additional types of attenuation 104
4.7.6. Reflections 105
4.7.7. Meteorological correction 105
4.8. Calculation of the noise level 106
4.8.1. Calculating the noise level with monopole or dipole noise sources 107
4.9. The determination of the sound propagation paths 109
4.10. Accuracy of a generic prediction model 112
4.11. Conclusions 113
4.12. References 114

Part 2. Measurements and control of railway noise 117

5. Measurements of railway noise 119

M. T. Kalivoda

5.1. Introduction 119
5.2. Exterior noise 120
5.2.1. Diagnostics 122
5.2.2. Type testing 126
5.2.3. Monitoring 144
5.2.4. Non-acoustic factors influencing exterior rail noise 149
5.3. Interior noise 158
5.3.1. Diagnostics 158
5.3.2. Type testing 160
5.4. References 160
6. Means of controlling rolling noise at source 163
 C. J. C. Jones and D. J. Thompson

 6.1. Introduction 163
 6.2. Wheel noise 164
 6.2.1. Damping treatments 164
 6.2.2. Wheel shape optimization 166
 6.2.3. Resilient wheels 168
 6.2.4. Reduced wheel radiation 169
 6.3. Track noise 170
 6.3.1. Rail pad stiffness 170
 6.3.2. Damping treatments 173
 6.3.3. Rail shape optimization 174
 6.3.4. Track mobility 176
 6.3.5. Ballastless track forms 177
 6.4. Roughness 177
 6.4.1. Effects of braking system 177
 6.4.2. Rail corrugation 179
 6.4.3. Changes to the contact zone 180
 6.5. Shielding 180
 6.6. Measures in combination 180
 6.7. Summary 182
 6.8. References 182

Part 3. Bursting noise associated with non-linear pressure waves in tunnels 185

7. Micropressure waves radiating from a Shinkansen tunnel portal 187
 T. Maeda

 7.1. Introduction 187
 7.2. Generation of a compression wave by a train 189
 7.3. The propagation of the compression wave through the tunnel 192
 7.4. Radiation of the micropressure wave out of the tunnel portal 198
 7.5. Measures to decrease the micropressure waves 203
 7.5.1. Measures applied to Shinkansen tunnels 204
 7.5.2. Measures applied to Shinkansen trains 206
 7.6. References 210

8. Emergence of an acoustic shock wave in a tunnel and a concept of shock-free propagation 213
 N. Sugimoto

 8.1. Introduction 213
 8.2. Overview of the problem 216
 8.3. Analysis of the near field 219
 8.3.1. Linear acoustic theory 219
 8.3.2. Evaluation of the pressure field 220
8.4. Analysis of the far field 223
 8.4.1. Formulation 223
 8.4.2. Non-linear wave equation for the far field 226
 8.4.3. Evolution of the pressure wave into a shock 228
8.5. Shock-free propagation 229
 8.5.1. Linear dispersion characteristics 229
 8.5.2. Effects of the array of Helmholtz resonators 234
 8.5.3. Suppression of shock formation 236
8.6. Experimental verification 241
 8.6.1. Experimental set-up 241
 8.6.2. Experimental results 243
8.7. Conclusion 244
8.8. References 245

Part 4. Generation of ground vibrations by surface trains 249

9. Generation of ground vibration boom by high-speed trains 251
 V. V. Krylov
 9.1. Introduction 251
 9.2. Quasi-static pressure mechanism of generating ground vibrations 252
 9.2.1. Dynamic properties of the track 253
 9.2.2. Forces applied from sleepers to the ground 255
 9.3. Green’s function for the problem 256
 9.3.1. Homogeneous elastic half-space 257
 9.3.2. Effect of layered ground structure 258
 9.4. Calculation of generated ground vibrations 262
 9.4.1. Vibrations from a single axle load 262
 9.4.2. Vibrations from a complete train 262
 9.5. Trans-Rayleigh trains 263
 9.5.1. General discussion 263
 9.5.2. Ground vibrations from TGV and Eurostar trains 265
 9.5.3. High-speed trains travelling underground 270
 9.5.4. Waveguide effects of embankments on generated ground vibration fields 277
 9.6. Conclusions 281
 9.7. Acknowledgements 282
 9.8. References 282

10. Free-field vibrations during the passage of a high-speed train: experimental results and numerical predictions 285
 G. Degrande
 10.1. Introduction 285
 10.2. The in situ measurements 287
 10.2.1. The train 287
 10.2.2. The track 288
Preface

During the last decade, high-speed railways have become one of the most advanced and fast-developing branches of transportation. The reasons for this are the relatively low air pollution per passenger, compared with road vehicles, and the very high speeds achievable by the most advanced modern trains – French TGV, Eurostar, Thalys, the German ICE, British high-speed trains, the Italian Pendolino, the Swedish X2000, the Japanese Shinkansen, etc. For example, for French TGV trains a maximum speed of more than 515 km/h was achieved in May 1990, and speeds close to 300 km/h are now typical for commercially used TGV and Eurostar trains. Prospective plans for the year 2010 assume that the New European Trunk Line will have connected Paris, London, Brussels, Amsterdam, Cologne and Frankfurt by a high-speed railway service that will provide fast and more convenient passenger communications within Europe. Similar plans are being developed in the USA and Japan. All these make high-speed railways increasingly competitive with air and road transport at short and medium distances.

Unfortunately, when train speeds increase, the intensity of railway-generated noise and vibration generally becomes higher. And this represents a major environmental problem for nearby residents, schools and hospitals. Railway operators and local authorities need to be familiar with those new aspects of railway noise and vibration which are associated with high-speed trains. Almost all known mechanisms of generation of railway noise and vibration are speed dependent. These include both wheel/rail rolling noise and aerodynamic noise, the latter being important for train speeds higher than 300 km/h. This applies even more so for generated ground vibrations. For example, when train speeds exceed certain critical velocities of elastic waves propagating in the ground or in the track/ground system, new mechanisms of generation of ground vibrations may appear, in addition to those already known for conventional trains. In particular, a very large increase in generated ground vibrations may occur if train speeds exceed the velocity of Rayleigh surface waves in the ground. If this happens, a ground vibration boom takes place, similar to the sonic boom normally associated with supersonic aircraft. The first observation of a ground vibration boom took place on the recently opened high-speed railway line in Sweden. This line was built on very soft soil, with Rayleigh wave velocities as low as 45 m/s. This is why an increase in train speed from 140 to
180 km/h was sufficient for the phenomenon to be observed, thus indicating that ‘supersonic’ or (more precisely) ‘trans-Rayleigh’ trains have become today’s reality.

There are many other new physical effects and mechanisms of generation of noise and vibration which are specific to high-speed trains, for example the effects of train-induced non-linear pressure wave propagation in long tunnels, resulting in bursting noise radiated from the exit tunnel portals. In addition to these new effects, the ‘traditional’ mechanisms of generation of railway noise and vibration and their propagation from the source to a receiver demonstrate interesting new features and sometimes behave in a different way as train speeds increase. An example of this may be seen in the design of noise barriers for high-speed railway lines. Such barriers should take into account the spatial redistribution of noise generation mechanisms as train speeds increase.

Although some of the problems of noise and vibration from high-speed trains are being addressed in an increasing number of journal papers and conference proceedings, there is still no general reference book which could help a reader starting to study this problem to find answers to numerous theoretical and practical questions. The existing reviews concerning railway-generated noise and vibration deal largely with conventional trains and do not reflect specific high-speed problems. The present book, which consists of 14 chapters grouped into five parts, aims to fill this gap. It represents the views of leading international experts on the current status of the problems of generation and propagation of noise and vibration from high-speed trains and suggests possible ways of reducing their environmental impact. The book describes mainly the results of recent academic research and is pitched largely at an advanced level. In the light of this, it is assumed that the ideal reader will have a university background in engineering, physics or applied mathematics. At the same time, several chapters of the book have been written by railway noise and vibration practitioners. These chapters contain a lot of experimental data with interesting illustrations and can be understood by a less well-prepared audience.

The intended readership of the book is rather wide. It includes scientists and engineers working on the prediction and remediation of railway noise and vibration, environmental consultants investigating particular situations associated with the environmental impact of railways, local authorities, designers of new railway lines, etc. The book will also be useful to university students, railway enthusiasts and for members of the general public concerned with topical environmental issues.

Victor V. Krylov