Noise and vibration from high-speed trains

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is the contents page and preface to the book, Noise and vibration from high-speed trains [© V. V. Krylov and Thomas Telford Limited]. The definitive version is available at: httpdx.doi.org/10.1680/navfht.29637 and further content is available from Google Books.

Metadata Record: https://dspace.lboro.ac.uk/2134/10014

Version: Published

Publisher: © V. V. Krylov and Thomas Telford Limited

Please cite the published version.
Noise and vibration from high-speed trains

Edited by

V. V. Krylov

Department of Civil and Structural Engineering
Nottingham Trent University
Contents

Preface xi

Part 1. Generation and propagation of railway noise 1

1. Theory of generation of wheel/rail rolling noise 3

 D. J. Thompson

 1.1. Introduction 3
 1.2. Wheel dynamics 6
 1.2.1. Modes of vibration of a railway wheel 6
 1.2.2. Frequency response functions 9
 1.2.3. Effects of rotation 10
 1.3. Track dynamics 11
 1.3.1. Models for track vibration 11
 1.3.2. Frequency response functions 11
 1.3.3. Propagation along the track 12
 1.3.4. Sleeper response 13
 1.3.5. Effects of preload 13
 1.4. Roughness and interaction 14
 1.4.1. Equations of wheel/rail interaction 14
 1.4.2. Contact receptances 15
 1.4.3. Wheel and rail roughness 16
 1.4.4. Roughness modification at the contact zone 17
 1.4.5. Effective damping of a rolling wheel 18
 1.5. Radiation of sound 18
 1.5.1. Radiation from the wheel 18
 1.5.2. Radiation from the rail 20
 1.5.3. Radiation from the sleepers 21
 1.5.4. Aerodynamic sources 21
 1.5.5. Contribution of various sources 22
 1.6. Validation 23
 1.6.1. Experimental set-up 23
 1.6.2. Results 23
 1.6.3. Sine wheel tests 25
 1.7. Summary 25
 1.8. References 25
2. Wheel and rail excitation from roughness 27

P. J. Remington

2.1. Introduction 27
2.2. Roughness modelling 29
 2.2.1. Average roughness model 31
 2.2.2. Distributed point-reacting spring model 33
 2.2.3. Full elastic-interaction model 40
2.3. Roughness measurement 45
 2.3.1. Accelerometer-based devices 45
 2.3.2. Displacement-based devices 46
2.4. Wheel and rail roughness characteristics 48
2.5. Controlling wheel/rail noise at the source 53
 2.5.1. Roughness amplitude reduction 54
 2.5.2. Contact stiffness reduction and contact area increase 56
2.6. Summary and conclusions 61
2.7. References 62

3. High-speed train noise barrier tests at reduced scale 65

J. D. van der Toorn

3.1. Modelling outdoor sound propagation 65
3.2. Scale modelling 65
 3.2.1. Similarity 65
 3.2.2. Measurable quantities 66
 3.2.3. Sound sources 66
 3.2.4. Receiver 70
 3.2.5. Atmospheric absorption 70
 3.2.6. Ground plane 71
 3.2.7. Barriers 73
3.3. Scale modelling of railway noise 73
 3.3.1. An acoustical 1:32 scale model of a high-speed train 73
 3.3.2. An acoustical 1:32 scale model of a railway track 75
3.4. Design of sound-absorbing barriers at a scale of 1:32 76
 3.4.1. Reference absorption curve 76
 3.4.2. Absorption extracted from excess attenuation 79
3.5. Barrier tests 79
3.6. Concluding remarks 81
3.7. Acknowledgements 82
3.8. References 82

4. Generic prediction models for environmental railway noise 85

J. J. A. van Leeuwen

4.1. Introduction 85
4.2. Noise indicators 85
 4.2.1. Annoyance 85
 4.2.2. The noise level and the A-frequency-weighted noise level 86
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.</td>
<td>Root mean square average</td>
<td>86</td>
</tr>
<tr>
<td>4.2.4.</td>
<td>The maximum sound level $L_{A, \text{max}}$</td>
<td>87</td>
</tr>
<tr>
<td>4.2.5.</td>
<td>The long-time average sound level and the equivalent sound level</td>
<td>87</td>
</tr>
<tr>
<td>4.2.6.</td>
<td>Statistical indicators</td>
<td>87</td>
</tr>
<tr>
<td>4.2.7.</td>
<td>The basic indicators: $L_{A, \text{day}}, L_{A, \text{evening}}, L_{A, \text{night}}$ and $L_{A, 24\ h}$</td>
<td>87</td>
</tr>
<tr>
<td>4.2.8.</td>
<td>The composite indicator L_{den}</td>
<td>88</td>
</tr>
<tr>
<td>4.3.</td>
<td>Background to environmental-noise predictions</td>
<td>88</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Why noise predictions?</td>
<td>88</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Noise predictions for where?</td>
<td>88</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>What do we want to calculate?</td>
<td>89</td>
</tr>
<tr>
<td>4.3.4.</td>
<td>When to use prediction models</td>
<td>91</td>
</tr>
<tr>
<td>4.3.5.</td>
<td>How do you provide your input?</td>
<td>92</td>
</tr>
<tr>
<td>4.3.6.</td>
<td>Sequence of noise predictions</td>
<td>93</td>
</tr>
<tr>
<td>4.4.</td>
<td>What is a noise prediction model?</td>
<td>94</td>
</tr>
<tr>
<td>4.5.</td>
<td>Noise prediction methodology</td>
<td>95</td>
</tr>
<tr>
<td>4.6.</td>
<td>Source description model</td>
<td>96</td>
</tr>
<tr>
<td>4.6.1.</td>
<td>Sound radiation characteristics</td>
<td>98</td>
</tr>
<tr>
<td>4.7.</td>
<td>Propagation models</td>
<td>98</td>
</tr>
<tr>
<td>4.7.1.</td>
<td>Geometrical spreading</td>
<td>100</td>
</tr>
<tr>
<td>4.7.2.</td>
<td>Atmospheric absorption</td>
<td>101</td>
</tr>
<tr>
<td>4.7.3.</td>
<td>Absorption by the ground</td>
<td>101</td>
</tr>
<tr>
<td>4.7.4.</td>
<td>Attenuation due to a barrier or another obstacle</td>
<td>102</td>
</tr>
<tr>
<td>4.7.5.</td>
<td>Additional types of attenuation</td>
<td>104</td>
</tr>
<tr>
<td>4.7.6.</td>
<td>Reflections</td>
<td>105</td>
</tr>
<tr>
<td>4.7.7.</td>
<td>Meteorological correction</td>
<td>105</td>
</tr>
<tr>
<td>4.8.</td>
<td>Calculation of the noise level</td>
<td>106</td>
</tr>
<tr>
<td>4.8.1.</td>
<td>Calculating the noise level with monopole or dipole noise sources</td>
<td>107</td>
</tr>
<tr>
<td>4.9.</td>
<td>The determination of the sound propagation paths</td>
<td>109</td>
</tr>
<tr>
<td>4.10.</td>
<td>Accuracy of a generic prediction model</td>
<td>112</td>
</tr>
<tr>
<td>4.11.</td>
<td>Conclusions</td>
<td>113</td>
</tr>
<tr>
<td>4.12.</td>
<td>References</td>
<td>114</td>
</tr>
</tbody>
</table>

Part 2. Measurements and control of railway noise

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Measurements of railway noise</td>
<td>119</td>
</tr>
<tr>
<td>5.1.</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.2.</td>
<td>Exterior noise</td>
<td>120</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Diagnostics</td>
<td>122</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Type testing</td>
<td>126</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Monitoring</td>
<td>144</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Non-acoustic factors influencing exterior rail noise</td>
<td>149</td>
</tr>
<tr>
<td>5.3.</td>
<td>Interior noise</td>
<td>158</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Diagnostics</td>
<td>158</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Type testing</td>
<td>160</td>
</tr>
<tr>
<td>5.4.</td>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>
6. Means of controlling rolling noise at source 163

C. J. C. Jones and D. J. Thompson

6.1. Introduction 163
6.2. Wheel noise 164
 6.2.1. Damping treatments 164
 6.2.2. Wheel shape optimization 166
 6.2.3. Resilient wheels 168
 6.2.4. Reduced wheel radiation 169
6.3. Track noise 170
 6.3.1. Rail pad stiffness 170
 6.3.2. Damping treatments 173
 6.3.3. Rail shape optimization 174
 6.3.4. Track mobility 176
 6.3.5. Ballastless track forms 177
6.4. Roughness 177
 6.4.1. Effects of braking system 177
 6.4.2. Rail corrugation 179
 6.4.3. Changes to the contact zone 180
6.5. Shielding 180
6.6. Measures in combination 180
6.7. Summary 182
6.8. References 182

Part 3. Bursting noise associated with non-linear pressure waves in tunnels 185

7. Micropressure waves radiating from a Shinkansen tunnel portal 187

T. Maeda

7.1. Introduction 187
7.2. Generation of a compression wave by a train 189
7.3. The propagation of the compression wave through the tunnel 192
7.4. Radiation of the micropressure wave out of the tunnel portal 198
7.5. Measures to decrease the micropressure waves 203
 7.5.1. Measures applied to Shinkansen tunnels 204
 7.5.2. Measures applied to Shinkansen trains 206
7.6. References 210

8. Emergence of an acoustic shock wave in a tunnel and a concept of shock-free propagation 213

N. Sugimoto

8.1. Introduction 213
8.2. Overview of the problem 216
8.3. Analysis of the near field 219
 8.3.1. Linear acoustic theory 219
 8.3.2. Evaluation of the pressure field 220
8.4. Analysis of the far field
8.4.1. Formulation 223
8.4.2. Non-linear wave equation for the far field 226
8.4.3. Evolution of the pressure wave into a shock 228
8.5. Shock-free propagation 229
8.5.1. Linear dispersion characteristics 229
8.5.2. Effects of the array of Helmholtz resonators 234
8.5.3. Suppression of shock formation 236
8.6. Experimental verification 241
8.6.1. Experimental set-up 241
8.6.2. Experimental results 243
8.7. Conclusion 244
8.8. References 245

Part 4. Generation of ground vibrations by surface trains 249

9. Generation of ground vibration boom by high-speed trains 251
V. V. Krylov
9.1. Introduction 251
9.2. Quasi-static pressure mechanism of generating ground vibrations 252
9.2.1. Dynamic properties of the track 253
9.2.2. Forces applied from sleepers to the ground 255
9.3. Green’s function for the problem 256
9.3.1. Homogeneous elastic half-space 257
9.3.2. Effect of layered ground structure 258
9.4. Calculation of generated ground vibrations 262
9.4.1. Vibrations from a single axle load 262
9.4.2. Vibrations from a complete train 262
9.5. Trans-Rayleigh trains 263
9.5.1. General discussion 263
9.5.2. Ground vibrations from TGV and Eurostar trains 265
9.5.3. High-speed trains travelling underground 270
9.5.4. Waveguide effects of embankments on generated ground vibration fields 277
9.6. Conclusions 281
9.7. Acknowledgements 282
9.8. References 282

10. Free-field vibrations during the passage of a high-speed train: experimental results and numerical predictions 285
G. Degrange
10.1. Introduction 285
10.2. The in situ measurements 287
10.2.1. The train 287
10.2.2. The track 288
10.2.3. The soil 288
10.2.4. The experimental set-up 290

10.3. Experimental results 291
10.3.1. The passage of a Thalys HST at a speed \(v = 314 \) km/h 291
10.3.2. The influence of the train speed 293

10.4. Krylov’s analytical prediction model 298
10.4.1. The force transmitted by a sleeper due to a single axle load 300
10.4.2. The forces transmitted by all sleepers due to a train passage 301
10.4.3. Response of the soil 302

10.5. Analytical predictions 303
10.5.1. Track response 303
10.5.2. Green’s functions 305
10.5.3. Free-field response 306

10.6. Conclusion 312
10.7. Acknowledgements 313
10.8. References 313

11. High-speed trains on soft ground: track–embankment–soil response
and vibration generation 315

C. Madshus and A. M. Kaynia

11.1. Introduction 315
11.2. Case study 315
11.2.1. Test site and test programme 317
11.2.2. Observations 317
11.3. Measurements 323
11.4. Dynamic properties of soil and embankment materials 326
11.5. Numerical simulation 333
11.5.1. Simulations and comparisons 336
11.6. Countermeasures 337
11.7. Physical model 339
11.8. Environmental vibration 342
11.9. Conclusions 343
11.10. Acknowledgements 344
11.11. References 344

12. Ground vibrations alongside tracks induced by high-speed trains:
prediction and mitigation 347

H. Takemiya

12.1. Introduction 347
12.2. Basic theory 349
12.2.1. Solution method for a moving load 349
12.2.2. Track–ground dynamic interaction 351
12.2.3. Modelling of a loading by train 354
12.2.4. Ground vibration due to a quasi-static moving load 355
12.2.5. Elastodynamic analysis 357
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3. Features of the response for a moving load</td>
<td>363</td>
</tr>
<tr>
<td>12.3.1. Dispersion characteristics of layers</td>
<td>363</td>
</tr>
<tr>
<td>12.3.2. Transient responses</td>
<td>364</td>
</tr>
<tr>
<td>12.3.3. Ground surface motions</td>
<td>374</td>
</tr>
<tr>
<td>12.3.4. Response of track–ground system</td>
<td>375</td>
</tr>
<tr>
<td>12.4. Field measurements, theoretical prediction and mitigation</td>
<td>377</td>
</tr>
<tr>
<td>12.4.1. Measurement data</td>
<td>377</td>
</tr>
<tr>
<td>12.4.2. Wave propagation at the site</td>
<td>380</td>
</tr>
<tr>
<td>12.4.3. Prediction of ground motions</td>
<td>383</td>
</tr>
<tr>
<td>12.4.4. Vibration mitigation measures – WIBs</td>
<td>385</td>
</tr>
<tr>
<td>12.5. Conclusion</td>
<td>387</td>
</tr>
<tr>
<td>12.6. Appendix: layer stiffness matrix</td>
<td>389</td>
</tr>
<tr>
<td>12.6.1. The layer stiffness matrix with respect to stresses acting on the z plane ${\sigma_{12}, \sigma_{22}, \sigma_{32}}$</td>
<td>389</td>
</tr>
<tr>
<td>12.6.2. The stiffness matrix for a half-space with respect to stresses acting on the z plane</td>
<td>391</td>
</tr>
<tr>
<td>12.7. References</td>
<td>391</td>
</tr>
</tbody>
</table>

Part 5. Ground vibrations generated by underground trains

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Prediction and measurements of ground vibrations generated from tunnels built in water-saturated soil</td>
<td>397</td>
</tr>
<tr>
<td>S. A. Kostarev, S. A. Makhorykh and S. A. Rybak</td>
<td></td>
</tr>
<tr>
<td>13.1. Introduction</td>
<td>397</td>
</tr>
<tr>
<td>13.2. Waves radiated by a cylindrical oscillating shell</td>
<td>398</td>
</tr>
<tr>
<td>13.3. Transmission of vibrations to the ground surface</td>
<td>405</td>
</tr>
<tr>
<td>13.4. Two-level elastic system for vibration reduction</td>
<td>407</td>
</tr>
<tr>
<td>13.5. Method of estimation of the elastic parameters and damping of layered ground</td>
<td>411</td>
</tr>
<tr>
<td>13.6. Discussion</td>
<td>418</td>
</tr>
<tr>
<td>13.7. Acknowledgements</td>
<td>421</td>
</tr>
<tr>
<td>13.8. References</td>
<td>421</td>
</tr>
</tbody>
</table>

14. Measures for reducing ground vibration generated by trains in tunnels	423
H. E. M. Hunt	
14.1. Introduction	423
14.2. Tunnels with floating slabs	424
14.3. Vibration from railway tunnels	425
14.4. Conclusions	430
14.5. References	430

Index | 431 |
Preface

During the last decade, high-speed railways have become one of the most advanced and fast-developing branches of transportation. The reasons for this are the relatively low air pollution per passenger, compared with road vehicles, and the very high speeds achievable by the most advanced modern trains – French TGV, Eurostar, Thalys, the German ICE, British high-speed trains, the Italian Pendolino, the Swedish X2000, the Japanese Shinkansen, etc. For example, for French TGV trains a maximum speed of more than 515 km/h was achieved in May 1990, and speeds close to 300 km/h are now typical for commercially used TGV and Eurostar trains. Prospective plans for the year 2010 assume that the New European Trunk Line will have connected Paris, London, Brussels, Amsterdam, Cologne and Frankfurt by a high-speed railway service that will provide fast and more convenient passenger communications within Europe. Similar plans are being developed in the USA and Japan. All these make high-speed railways increasingly competitive with air and road transport at short and medium distances.

Unfortunately, when train speeds increase, the intensity of railway-generated noise and vibration generally becomes higher. And this represents a major environmental problem for nearby residents, schools and hospitals. Railway operators and local authorities need to be familiar with those new aspects of railway noise and vibration which are associated with high-speed trains. Almost all known mechanisms of generation of railway noise and vibration are speed dependent. These include both wheel/rail rolling noise and aerodynamic noise, the latter being important for train speeds higher than 300 km/h. This applies even more so for generated ground vibrations. For example, when train speeds exceed certain critical velocities of elastic waves propagating in the ground or in the track/ground system, new mechanisms of generation of ground vibrations may appear, in addition to those already known for conventional trains. In particular, a very large increase in generated ground vibrations may occur if train speeds exceed the velocity of Rayleigh surface waves in the ground. If this happens, a ground vibration boom takes place, similar to the sonic boom normally associated with supersonic aircraft. The first observation of a ground vibration boom took place on the recently opened high-speed railway line in Sweden. This line was built on very soft soil, with Rayleigh wave velocities as low as 45 m/s. This is why an increase in train speed from 140 to
180 km/h was sufficient for the phenomenon to be observed, thus indicating that ‘supersonic’ or (more precisely) ‘trans-Rayleigh’ trains have become today’s reality.

There are many other new physical effects and mechanisms of generation of noise and vibration which are specific to high-speed trains, for example the effects of train-induced non-linear pressure wave propagation in long tunnels, resulting in bursting noise radiated from the exit tunnel portals. In addition to these new effects, the ‘traditional’ mechanisms of generation of railway noise and vibration and their propagation from the source to a receiver demonstrate interesting new features and sometimes behave in a different way as train speeds increase. An example of this may be seen in the design of noise barriers for high-speed railway lines. Such barriers should take into account the spatial redistribution of noise generation mechanisms as train speeds increase.

Although some of the problems of noise and vibration from high-speed trains are being addressed in an increasing number of journal papers and conference proceedings, there is still no general reference book which could help a reader starting to study this problem to find answers to numerous theoretical and practical questions. The existing reviews concerning railway-generated noise and vibration deal largely with conventional trains and do not reflect specific high-speed problems. The present book, which consists of 14 chapters grouped into five parts, aims to fill this gap. It represents the views of leading international experts on the current status of the problems of generation and propagation of noise and vibration from high-speed trains and suggests possible ways of reducing their environmental impact. The book describes mainly the results of recent academic research and is pitched largely at an advanced level. In the light of this, it is assumed that the ideal reader will have a university background in engineering, physics or applied mathematics. At the same time, several chapters of the book have been written by railway noise and vibration practitioners. These chapters contain a lot of experimental data with interesting illustrations and can be understood by a less well-prepared audience.

The intended readership of the book is rather wide. It includes scientists and engineers working on the prediction and remediation of railway noise and vibration, environmental consultants investigating particular situations associated with the environmental impact of railways, local authorities, designers of new railway lines, etc. The book will also be useful to university students, railway enthusiasts and for members of the general public concerned with topical environmental issues.

Victor V. Krylov