Erratum: “Vibrational impact of high-speed trains. I. Effect of track dynamics”
[J. Acoust. Soc. Am. 100, 3121-3134 (1996)]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This erratum was published in the serial Journal of the Acoustical Society of America [© Acoustical Society of America].

Metadata Record: https://dspace.lboro.ac.uk/2134/10045

Version: Published

Publisher: © Acoustical Society of America

Please cite the published version.
This item was submitted to Loughborough's Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

![Creative Commons Licence](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

- **Attribution.** You must attribute the work in the manner specified by the author or licensor.

- **Noncommercial.** You may not use this work for commercial purposes.

- **No Derivative Works.** You may not alter, transform, or build upon this work.

 - For any reuse or distribution, you must make clear to others the license terms of this work.
 - Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full licence).

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Victor V. Krylov
Centre for Research into the Built Environment, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, United Kingdom

(Received 14 January 1997; accepted for publication 20 February 1997)

[S0001-4966(97)01306-4]

PACS numbers: 43.40.At, 43.40.Kd, 43.10.Vx [PJR]

In the above-mentioned paper, the transition from the calculated dynamic values of track deflection curves \(w(vt)\) to the corresponding load forces \(P(t)\) applied from sleepers to the ground at very high train speeds has been made using the earlier derived quasi-static relationship

\[
P(t) = T \frac{2w(vt)/w_{\text{max}}}{(d/x_0)}
\]

——formula (5) of the paper. This led to a wrong conclusion that the approaching of the train speed to the critical track wave velocity will be associated with a decreased level of generated ground vibrations. In fact, the result is opposite: the level of generated vibrations will increase when train speeds approach the track wave critical velocity.

To provide the correct result, formula (5) should be re-written in a more general form valid for both quasi-static and dynamic regimes:

\[
P(t) = T \int \frac{2w(vt)/w_{\text{max}}}{(d/x_0)} \, dx_0.
\]

(5)

Here, \(w_{\text{max}}\) and \(x_0\) are, respectively, the maximum value of \(w(vt)\) and the track deflection length, both being calculated in the quasi-static approximation. Derivation of (5) goes straightforward if we take into account that

\[
P(t) = \alpha w(vt) \Delta d,
\]

where \(\Delta d\) is the sleeper width and \(\alpha\) is the constant of the Winkler foundation. Exclusion of \(\alpha\) and \(\Delta d\) from this expression may be done by integrating Eq. (1) of the paper taking into consideration a quasi-static regime (i.e., for \(\frac{d^2w}{dt^2}=0\) over the distance along the track \(x\). The integration, which takes into account that load forces are transmitted to the ground through sleepers only, results in the formula

\[
\alpha w_{\text{max}} \Delta d N_{\text{eff}} = T,
\]

where the quantity \(N_{\text{eff}} = \pi/2\beta d = x_0/2d\) determined as a solution of Eq. (6) of the paper is the effective number of sleepers equalizing the quasi-static axle load \(T\). Combined with the expression for \(P(t)\), this gives the above written more general formula (5).

Since, for dynamic values of \(w(vt)\), the factor \(\delta = (1 - \nu^2/v^2)\) is present in the denominator of the corrected formula (5) [and of the associated formula (10)], the forces \(P(t)\) applied from sleepers to the ground (Fig. 3) will increase as the train speed approaches the critical track wave velocity. Therefore, in Figs. 6 and 11 of the paper and in the corresponding conclusion one will have the increase in levels of generated ground vibrations for train speeds approaching the critical track wave velocity, instead of the earlier predicted decrease. The corrected Figs. 3, 6, and 11 will be reproduced in detail in a forthcoming publication. Other formulas, figures, and conclusions of the paper remain unchanged.