Differential acylated ghrelin, peptide YY3-36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: KING, J.A. ... et al, 2011. Differential acylated ghrelin, peptide YY3-36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction. Journal of Clinical Endocrinology & Metabolism, 96 (4), pp. 1114-1121.

Additional Information:

- This article was published in the Journal of Clinical Endocrinology & Metabolism: http://jcem.endojournals.org/

Metadata Record: https://dspace.lboro.ac.uk/2134/10162

Version: Published

Publisher: © The Endocrine Society

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Differential Acylated Ghrelin, Peptide YY336, Appetite, and Food Intake Responses to Equivalent Energy Deficits Created by Exercise and Food Restriction

James A. King, Lucy K. Wasse, Joshua Ewens, Kathrina Crystallis, Julian Emmanuel, Rachel L. Batterham and David J. Stensel

J. Clin. Endocrinol. Metab. 2011 96:1114-1121 originally published online Jan 26, 2011; doi: 10.1210/jc.2010-2735

To subscribe to Journal of Clinical Endocrinology & Metabolism or any of the other journals published by The Endocrine Society please go to: http://jcem.endojournals.org/subscriptions/
Differential Acylated Ghrelin, Peptide YY3–36, Appetite, and Food Intake Responses to Equivalent Energy Deficits Created by Exercise and Food Restriction

James A. King, Lucy K. Wasse, Joshua Ewens, Kathrina Crystallis, Julian Emmanuel, Rachel L. Batterham, and David J. Stensel

School of Sport, Exercise, and Health Sciences (J.A.K., L.K.W., J.E., K.C., D.J.S.), Loughborough University, Leicestershire LE11 3TU, United Kingdom; and Centre for Obesity Research (J.E., R.L.B.), Department of Medicine, University College London, London WC1E 6JJ, United Kingdom

Context: Acute energy deficits imposed by food restriction increase appetite and energy intake; however, these outcomes remain unchanged when energy deficits are imposed by exercise.

Objective: Our objective was to determine the potential role of acylated ghrelin and peptide YY3–36 (PYY3–36) in mediating appetite and energy intake responses to identical energy deficits imposed by food restriction and exercise.

Design: Twelve healthy males completed three 9-h trials (exercise deficit, food deficit, and control) in a randomized counterbalanced design. Participants ran for 90 min (70% of VO2 max) at the beginning of the exercise deficit trial and then rested for 7.5 h. Participants remained sedentary throughout the food deficit and control trials. Test meals were consumed by participants at 2 and 4.75 h in all trials. The amount provided in the food deficit trial was restricted so that an energy deficit (equivalent to that imposed by exercise) was induced relative to control. Participants were permitted access to a buffet meal at 8 h.

Results: The energy deficits imposed by food restriction (4820 ± 151 kJ) and exercise (4715 ± 113 kJ) were similar. Appetite and ad libitum energy intake responded in a compensatory fashion to food restriction yet were not influenced by exercise. Plasma acylated ghrelin concentrations increased, whereas PYY3–36 decreased, in response to food restriction (two-way ANOVA, trial × time interaction, P < 0.001 for each). Exercise did not induce such compensatory responses.

Conclusions: These findings suggest a mediating role of acylated ghrelin and PYY3–36 in determining divergent feeding responses to energy deficits imposed by food restriction and exercise. (J Clin Endocrinol Metab 96: 1114–1121, 2011)

As the prevalence of overweight and obesity continues to rise globally, effective strategies to facilitate successful weight control are needed (1). A more complete understanding of the mechanisms of energy balance regulation is required to enable this. In basic terms, energy balance is determined by the energy consumed as food and drink and that expended during physical activity (2). Thus, in theory, for the purpose of inducing weight loss, individuals can induce an energy deficit by either restricting their dietary intake or by increasing the amount of physical activity performed. Practically, however, at least within the short term, it appears that these two methods of creating an energy deficit have a markedly different influence on appetite and energy intake (3), i.e., different responses occur when there is a restriction on energy entering the body compared with when there is an increase in energy leaving the body.

Abbreviations: AUC, Area under the curve; Ex-Def, exercise-induced energy deficit trial; Food-Def, food-induced energy deficit trial; PYY, peptide YY.
It has been shown that restricting energy intake induces a rapid compensatory increase in appetite and food intake (3, 4). Paradoxically, acute bouts of exercise do not produce such compensatory responses, even when the amount of energy expended is large (>5020 kJ) (5–7). At present, the underlying mechanisms determining such divergent responses to a short-term negative energy balance are not entirely clear. It has been suggested that differences in the strength of postingestive satiety signals generated in response to these interventions may be impairative in this (3, 5). Direct evidence supporting this contention is not available, however.

Energy homeostasis is regulated by a complex neuroendocrine system, spanning both central and peripheral tissues (8). Within this system, peptides secreted from the gastrointestinal tract in response to nutrient ingestion have an important role in regulating both acute and chronic energy homeostasis (9). Herein, ghrelin remains unique as the only known circulating peptide that stimulates appetite and food consumption, and this property has made ghrelin an intriguing research target (10, 11). Conversely, several gastrointestinal peptides exist that function as negative feedback signals, suppressing appetite and food intake once nutrients are ingested. In this regard, peptide YY (PYY) has received explicit attention owing to its prominent role in mediating within meal satiety and intermeal satiety (12).

Circulating levels of ghrelin and PYY are sensitive to nutrient intake (13–17). Compensatory adjustments in circulating levels of ghrelin and PYY occur as mechanisms aiding the acute regulation of energy balance. This responsiveness of ghrelin and PYY to acute nutrient intake may be linked to the apparent sensitivity of appetite and energy intake to acute food restriction. In contrast to this, research suggests that ghrelin and PYY remain unresponsive to acute deficits in energy induced by exercise (7, 18–20). Although moderate- to high-intensity bouts of exercise transiently alter circulating levels of these gut hormones in directions consistent with an inhibition of appetite (18, 20, 21), it does not appear that compensatory responses occur in the hours after exercise to correct for the energy imbalance. This unresponsiveness of ghrelin and PYY may be related to the apparent insensitivity of appetite and energy intake to the expenditure of energy through exercise.

The aim of the present study was to compare acylated ghrelin and PYY3–36 (the form of PYY chiefly responsible for appetite regulation) responses to equivalent energy deficits induced by diet (food restriction) and exercise. Within this, we sought to explore whether divergent acylated ghrelin and PYY3–36 responses were associated with dissimilar appetite and energy intake responses to these interventions. We predicted that circulating levels of acylated ghrelin and PYY3–36 would respond in a compensatory fashion (higher acylated ghrelin and lower PYY3–36) to acute energy deficits induced by restricting food intake but would be unresponsive to energy deficits induced by exercise.

Subjects and Methods

Participants

Loughborough University’s ethical advisory committee approved the study. Twelve healthy physically active males of white European descent (20–30 yr) gave their written informed consent to participate. Participants were nonsmokers, not taking any medication, and weight stable for 3 months before the study and had no food allergies or eating disorders. The physical characteristics of the participants were as follows: age, 23.4 ± 1.0 yr; body mass index, 22.8 ± 0.4 kg/m2; waist circumference, 75.3 ± 1.3 cm; and maximal oxygen uptake, 57.3 ± 1.2 ml/kg ⋅ min (mean ± SEM).

Preliminary sessions

Before the main trials, across two laboratory visits, participants were familiarized with the experimental setting, and the necessary anthropometric and preliminary exercise test data were collected. A submaximal treadmill running test and a maximal oxygen uptake test were each undertaken on a motorized treadmill as described previously (18). These data were used to determine the running speed required to elicit 70% of maximal oxygen uptake for each individual. A 90-min familiarization run was also completed to permit an accurate estimation of energy expenditure that was necessary to determine energy provision at test meals during the main trials.

Main trials

In subsequent weeks, participants completed three main trials (control, exercise-induced energy deficit, and diet-induced energy deficit) in a randomized-counterbalanced fashion, separated by at least 1 wk. Diet was standardized within the 24 h before each main trial, and alcohol, caffeine, and structured physical activity were not permitted during this period. Each main trial began at 0800 h and lasted 9 h. Participants arrived at the laboratory in the fasted state.

On the control trial, participants rested throughout. At two points (2 and 4.75 h) participants consumed test meals that were of sufficient energy content for their individually estimated energy requirements. At 8 h, a buffet meal was provided from which participants were free to consume food ad libitum. The exercise-induced energy deficit trial (Ex-Def) commenced when participants began a 90-min run on a level treadmill. The speed of the treadmill was identical to that completed during preliminary testing and was set to elicit 70% of maximal oxygen uptake. After the run, participants rested within the laboratory for 7.5 h. At 2 and 4.75 h, participants consumed test meals that were identical to those provided in the control trial. At 8 h, a buffet meal was offered to participants. On the food-induced energy deficit trial (Food-Def), participants remained sedentary throughout. Test meals were provided at 2 and 4.75 h; however, the amount of energy provided at these meals was restricted so that an energy deficit was induced relative to control. The energy
deficit was identical to that elicited by exercise in the Ex-Def trial. This permitted a comparison of responses to identical energy deficits induced through diet as compared with exercise. At 8 h, the same a buffet meal was offered to participants as in the control and Ex-Def trials.

Appetite and test meals
During the main trials, 100-mm visual analog scales were completed at 30-min intervals to assess perceptions of appetite (hunger, fullness, satisfaction, and prospective food consumption) (22). During the main trials, test meals were provided to participants at 2 and 4.75 h. Each meal was consumed within 15 min. The test meals consisted of a tuna and mayonnaise sandwich, salted crisps, chocolate muffin, and green apple. The macronutrient content of the meal was balanced (fat 34%, protein 18%, carbohydrate 48%) and remained consistent across meals. The energy content of the test meals were identical in the control and Ex-Def trials and was calculated to be sufficient to meet each participants’ individual energy requirements. To calculate this, resting daily energy requirements were estimated for each individual (23). This amount was then multiplied by a physical activity level of 1.4 to yield an amount of energy sufficient for a resting day. Participants received 70% of this amount divided equally across two identical test meals. In the Food-Def trial, participants received a restricted amount of energy at the test meals. The amount provided was calculated by deducting the net estimated energy expenditure of exercise from the energy provided at the test meals in the control and Ex-Def trials. The total amount deducted was divided equally across the two test meals.

Ad libitum buffet meals
At 8 h, participants were given access to a buffet meal for 30 min from which they were free to select and consume food ad libitum. The buffet was set up identically before each meal with food being presented in excess of expected consumption. The items available were semiskimmed milk, three varieties of cereal, cereal bars, white bread, brown bread, ham, Cheddar cheese, tuna, mayonnaise, butter, margarine, cookies, chocolate rolls, apples, oranges, and bananas. Participants were told to eat until satisfied and that additional food was available if desired. Meals were consumed in isolation so that social influence did not affect food selection. Food consumption was ascertained by examining the weighted difference in food items remaining compared with that initially presented. The energy and macronutrient content of the items consumed was ascertained using manufacturer values.

Blood sampling and analysis
During the main trials, venous blood samples were collected via a cannula (Venflon; Becton Dickinson, Helsingborg, Sweden) inserted into an antecubital vein. Blood samples were collected at baseline and 2, 3, 4.75, 6, 7, 8, and 9 h to measure circulating concentrations of acylated ghrelin and PYY3-36. Details on acylated ghrelin and PYY3-36 sample collection and processing have been described previously (18, 24). All blood samples were collected in the semisupine position. Measurements of hemoglobin and hematocrit were taken to estimate changes in plasma volume using the method of Dill and Costill (25).

An enzyme immunoassay was used to determine plasma concentrations of acylated ghrelin (SPI BIO, Montigny le Bretonneux, France). Plasma concentrations of PYY3–36 were determined using a RIA (Millipore, Watford, UK). To eliminate interassay variation, samples from each participant were analyzed in the same run. The within-batch coefficients of variation for the acylated ghrelin and PYY3–36 assays were 7.8 and 6.8%, respectively.

Statistical analysis
Data were analyzed using the Statistical Package for the Social Sciences (SPSS) software version 16.0 for Windows. All area under the curve (AUC) calculations were performed using the trapezoidal method. One-way repeated-measures ANOVA was used to assess differences between trials in fasting parameters, AUC values and energy/macronutrient intake. Repeated measures, two-factor ANOVA was used to examine differences between trials over time for appetite perceptions, acylated ghrelin and PYY3–36. Where significant main effects were found post hoc analysis was performed using the Bonferroni correction for multiple comparisons. The Pearson product moment correlation coefficient was used to examine relationships between variables. Correction of values for changes in plasma volume did not alter the statistical significance of findings therefore for simplicity the unadjusted values are presented. Statistical significance was accepted at the 5% level. Results are presented as mean ± SEM.

Results
Exercise responses
Participants completed the 90-min run at 9.6 ± 0.2 km/h. This elicited a mean oxygen consumption equivalent to 69.8 ± 0.9% of maximal oxygen uptake (40.0 ± 0.9 ml/kg · min, 2.87 ± 0.1 liters/min) and generated a mean heart rate and net energy expenditure of 173 ± 3 beats/min and 4715 ± 113 kJ, respectively. A mean nonprotein respiratory quotient of 0.92 ± 0.01 reflected the proportional oxidation of carbohydrate and fat (72 ± 3 and 28 ± 3%).

Appetite responses
Fasting appetite ratings (hunger, fullness, satisfaction, and prospective food consumption) did not differ significantly between trials. For each appetite marker, two-factor ANOVA revealed significant trial, time, and interaction (trial × time) main effects (all P < 0.001), indicating that appetite responses differed over time between the main trials (Fig. 1). For each appetite marker, post hoc analysis revealed significant trial differences between the Food-Def and control trial (all P < 0.001) and the Food-Def and Ex-Def trial (all P < 0.001), demonstrating higher ratings of hunger and prospective food consumption and reduced ratings of satisfaction and fullness in the Food-Def trial. At individual time points, post hoc analysis identified differences between the Food-Def and control trial (all P < 0.004) and the Food-Def and Ex-Def trial (all P < 0.006) at 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, and 8 h.
Table 1 shows AUC values calculated for each appetite visual analog scale.

Energy and macronutrient intake

At the test meals (first and second meal combined), participants consumed 7021 ± 92 kJ in the control and Ex-Def trials and 2200 ± 142 kJ in the Food-Def trial. Consequently, the energy deficit induced by food restriction was 4820 ± 151 kJ. This was comparable with the energy deficit induced through exercise (4715 ± 113 kJ). Table 2 displays the energy and macronutrient intake data at the *ad libitum* buffet meal. One-factor ANOVA revealed a significant main effect of trial for energy intake (*P* < 0.002). Post hoc analysis revealed a higher intake of energy on the Food-Def trial than the control trial (*P* < 0.001), whereas energy intake tended to be higher on the

<table>
<thead>
<tr>
<th>TABLE 1. Effect of control, Ex-Def, and Food-Def trials on appetite assessed using visual analog scales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hunger</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Ex-Def</td>
</tr>
<tr>
<td>Food-Def</td>
</tr>
<tr>
<td>Satisfaction</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Ex-Def</td>
</tr>
<tr>
<td>Food-Def</td>
</tr>
<tr>
<td>Fullness</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Ex-Def</td>
</tr>
<tr>
<td>Food-Def</td>
</tr>
<tr>
<td>PFC</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Ex-Def</td>
</tr>
<tr>
<td>Food-Def</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 12).

* Different from control (*P* < 0.001).

* Different from Ex-Def (*P* < 0.001).
Food-Def trial than the Ex-Def trial ($P = 0.058$). Both the absolute amount (grams) and percentage of energy derived from the macronutrients was compared across the main trials. The absolute intake of fat was significantly higher on the Food-Def trial than both the control and Ex-Def trials ($P < 0.001$). The absolute intake of protein and carbohydrate was significantly higher on the Food-Def trial than the control trial ($P < 0.05$ for each). The percentage of energy derived from fat was significantly higher in the Food-Def trial than the control ($P = 0.044$) and Ex-Def ($P = 0.044$) trials, whereas the percentage intake of carbohydrate was significantly reduced ($P < 0.006$ for both).

Plasma acylated ghrelin and PYY$_{3-36}$

Fasting plasma acylated ghrelin concentrations did not differ significantly between trials (Fig. 2a). Two-factor ANOVA revealed significant trial, time, and interaction (trial \times time) main effects (all $P < 0.001$). Across trials, post hoc analysis identified significantly higher circulating acylated ghrelin concentrations in the Food-Def trial compared with the control ($P = 0.002$) and Ex-Def ($P < 0.001$) trials. At individual time points, post hoc analysis identified significant differences between trials at 2, 3, 4.75, 6, 7, and 8 h (all $P < 0.05$).

Fasting plasma PYY$_{3-36}$ concentrations did not differ significantly between trials (Fig. 2b). Two-factor ANOVA revealed significant trial, time, and interaction (trial \times time) main effects (all $P < 0.001$). Across trials, post hoc analysis identified significantly lower circulating PYY$_{3-36}$ concentrations in the Food-Def trial as compared with the control trial ($P = 0.004$) and Ex-Def ($P < 0.001$) trials. At individual time points, post hoc analysis identified significant differences between trials at 2, 3, 4.75, 6, 7, and 8 h (all $P < 0.05$). Table 3 shows acylated ghrelin and PYY$_{3-36}$ AUC values calculated for the pre- and postprandial periods.

TABLE 2. Ad libitum energy and macronutrient intake in the control, Ex-Def, and Food-Def trials

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Ex-Def</th>
<th>Food-Def</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ)</td>
<td>4004 ± 427</td>
<td>4343 ± 653</td>
<td>6167 ± 318c</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>34 ± 5</td>
<td>38 ± 5</td>
<td>63 ± 5a,b</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>30.7 ± 3.3</td>
<td>33.4 ± 2.0</td>
<td>38.3 ± 1.7a,b</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>40 ± 10</td>
<td>47 ± 15</td>
<td>67 ± 9a</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>14.7 ± 2.1</td>
<td>15.0 ± 2.5</td>
<td>17.9 ± 1.8</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>124 ± 12</td>
<td>129 ± 17</td>
<td>159 ± 10c</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>54.6 ± 4.4</td>
<td>51.6 ± 3.1</td>
<td>43.8 ± 2.5a,b</td>
</tr>
</tbody>
</table>

Values are mean ± SEM ($n = 12$).

a Different from control ($P < 0.05$).

b Food-Def different from Ex-Def ($P < 0.05$).

Discussion

This study compared acylated ghrelin, PYY$_{3-36}$, appetite, and energy intake responses to equivalent energy deficits induced through acute dietary restriction and exercise. This study has shown that prandial acylated ghrelin and PYY$_{3-36}$ responses are sensitive to acute energy deficits induced through acute dietary restriction. In contrast, such compensatory adjustments do not occur when an equivalent energy deficit is imposed through exercise. These divergent responses of acylated ghrelin and PYY$_{3-36}$ are consistent with the respective appetite and energy intake responses to these interventions.

The present findings show that two methods of inducing an acute energy deficit have markedly different influences on appetite and energy intake; i.e., appetite and energy intake increase in response to food restriction but remain unchanged by exercise, despite the similarity of the energy deficit. These findings are consistent with previous results (3, 6, 7, 26) and from a practical perspective may
The findings from the present study support this hypothesis and suggest a mediating role of acylated ghrelin. Similarly, levels of PYY3–36 were lower during the Food-Def trial than the control and Ex-Def trials, indicating a weakened postprandial satiety response. These changes in acylated ghrelin and PYY3–36 were concordant with augmented appetite ratings and an approximately 50% higher ad libitum energy intake in the Food-Def trial compared with responses on the control and Ex-Def trials.

A handful of studies have examined the influence of exercise on acylated ghrelin and PYY. These studies have shown that moderate- to high-intensity aerobic exercise transiently suppresses circulating levels of acylated ghrelin, an effect that occurs concomitantly with a suppression of appetite (7, 18, 20, 28). This effect appears to be brief, however, with levels of acylated ghrelin returning quickly to control values and remaining no different for several hours after exercise. It is possible that this lack of change in acylated ghrelin after exercise may be one reason why acute bouts of exercise do not induce compensatory appetite and energy intake responses.

Circulating levels of PYY appear to increase transiently in response to exercise (21, 29, 30) and may even remain elevated for several hours after (20). It is important to note that these initial investigations measured circulating concentrations of total PYY and not PYY3–36, the PYY variant responsible for the appetite-inhibitory action of PYY (31). Only one study has investigated PYY3–36 responses to exercise (32). The results from this investigation showed that 60 min of moderate-intensity cycling did not alter circulating levels of PYY3–36, per se but may potentiate PYY3–36 responses to feeding. In the present investigation, circulating PYY3–36 concentrations were 27% higher than control 30 min after the end of exercise. Thus, exercise stimulated circulating levels of PYY3–36, and this finding contradicts that reported by Cheng et al. (32). The intensity and duration of exercise was greater in the present investigation; therefore, it is possible that only intense and/or prolonged exercise stimulates an increase in circulating PYY3–36.

In the present study, PYY3–36 responses to feeding were also examined. Interestingly, although the differences were not quite statistically significant, levels of PYY3–36 were notably higher after the test meals on the Ex-Def trial compared with the control trial. Thus, exercise appeared to potentiate increases in PYY3–36 after eating, and these findings support those previously described (20, 32). These outcomes suggest a beneficial effect of exercise on appetite regulation, i.e., enhanced satiation and/or satiety after meals. It is possible that an accentuated PYY3–36 response to exercise is implicated in the lack of change in appetite and energy intake observed afterward.

This study has some notable limitations. First, excess postexercise oxygen consumption, i.e., the sustained elevation in oxygen consumption that occurs after exercise, was not measured; therefore, it is likely that the energy deficit imposed by exercise may have been marginally underestimated (±314 kJ) (33). Second, the participants in

TABLE 3. Acylated ghrelin and PYY3-36 AUC in the control, Ex-Def, and Food-Def trials

<table>
<thead>
<tr>
<th></th>
<th>Preprandial (0-2 h), units 2 h</th>
<th>Postprandial (2-9 h), units 7 h</th>
<th>Total trial (0-9 h), units 9 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylated ghrelin (pg/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>327 ± 70</td>
<td>729 ± 209</td>
<td>1055 ± 276</td>
</tr>
<tr>
<td>Ex-Def</td>
<td>284 ± 63<sup>a</sup></td>
<td>677 ± 190</td>
<td>961 ± 254<sup>a</sup></td>
</tr>
<tr>
<td>Food-Def</td>
<td>331 ± 69<sup>b</sup></td>
<td>1040 ± 195<sup>a,b</sup></td>
<td>1371 ± 262<sup>b</sup></td>
</tr>
<tr>
<td>PYY3-36 (pmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>73 ± 6</td>
<td>318 ± 17</td>
<td>391 ± 22</td>
</tr>
<tr>
<td>Ex-Def</td>
<td>84 ± 7<sup>a</sup></td>
<td>354 ± 25</td>
<td>438 ± 31<sup>a</sup></td>
</tr>
<tr>
<td>Food-Def</td>
<td>73 ± 6<sup>b</sup></td>
<td>237 ± 28<sup>a,b</sup></td>
<td>310 ± 34<sup>a,b</sup></td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 12).

^a Different from control at P < 0.05.

^b Different from Ex-Def at P < 0.05.
the present study were male, young, lean, and fit; therefore, the findings may not generalize to females or those who are overweight or sedentary. Third, this study examined vigorous intensity exercise, and the findings may not apply to moderate- and light-intensity exercise, although the findings of one recent study are consistent in demonstrating that there is no compensatory increase in appetite, energy intake, and acylated ghrelin in response to brisk walking (19). Finally, it must be noted that the present investigation examined acute responses to a single bout of exercise, and this work does not provide information about the chronic effects of exercise over several days or longer on the reported outcomes.

In summary, this study has shown that equivalent energy deficits induced by food restriction and exercise have markedly different effects on appetite and energy intake. Food restriction elicits a rapid increase in appetite and energy intake, and these responses appear to be related to an attenuated postprandial PYY$_{3–36}$ response and to a more transient postprandial suppression of circulating acylated ghrelin. In contrast to this, acute energy deficits induced by exercise do not alter appetite or energy intake, and the results of this study suggest that this may be related to the failure of exercise to induce compensatory acylated ghrelin and PYY$_{3–36}$ responses. Further research is needed to examine other appetite-regulating peptides such as cholecystokinin and glucagon-like peptide-1 to see whether their reactions to the present interventions are consistent with those of acylated ghrelin and PYY$_{3–36}$. Future investigations may also seek to characterize responses in other populations, particularly the overweight/obese because it is with these individuals where the findings may hold most clinical relevance.

Acknowledgments

We thank the participants for dedicating their time to take part in this study.

Address all correspondence and requests for reprints to: Dr. David Stensel, School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire LE11 3TU, United Kingdom. E-mail: D.J.Stensel@lboro.ac.uk.

References

15. Callahan HS, Cummings DE, Pepe MS, Breen PA, Matthews CC, Weigle DS 2004 Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J Clin Endocrinol Metab 89:1319–1324
17. Leidy HJ, Williams NI 2006 Meal energy content is related to features of meal-related ghrelin profiles across a typical day of eating in non-obese premenopausal women. Horm Metab Res 38:317–322
tization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology 136:2115–2126