Novel method of producing highly uniform silica particles using inexpensive silica sources

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

• This is the abstract of an oral presentation delivered at UK Colloids 2011.

Metadata Record: https://dspace.lboro.ac.uk/2134/10630

Version: Accepted for publication

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Novel method of producing highly uniform silica particles using inexpensive silica sources

Marijana M. Dragosavac¹, Goran T. Vladišavljević¹, Richard G Holdich¹, Miguel Angel Suárez Valdés² and Michael T. Stillwell³

¹ Chemical Engineering, Loughborough University, Loughborough, UK, ² Chemical Engineering and Environmental Technology, University of Oviedo, Oviedo, Spain, ³ Micropore Technologies, Hatton, Derby, DE65 5DU

r.g.holdich@lboro.ac.uk

In the last few years there has been increasing interest in the production of porous inorganic materials with high surface area. Such materials have potential application in various fields of catalysis, separation, sorption, bioreactor, sensors and so on. Silica is an inorganic material that does not swell and with its good mechanical and thermal stability it can be used in various solvents and have wide applications. In the literature silicon alkoxide or tetraethoxysilane are mainly used as silica sources. The main drawback of using such materials is that they are expensive and therefore production of large quantities of silica would not be cost effective.

In this work silica droplets were successfully produced using The Dispersion Cell with a hydrophobic nickel membrane attached on the bottom of the cell (Fig. 1 a,b). Inexpensive sodium silicate and sulphuric acid were used as silica source (dispersed phase) and kerosene containing 2% Span 80 was used as continuous phase.

Fig. 1. (a) Hydrophobic nickel membrane with 15 µm pores and (b) Dispersion Cell both kindly provided by Micropore Ltd. UK. (c) SEM of calcined silica particles

By changing the shear stress on the membrane surface liquid silica droplets in the range between 50 and 160 µm were produced. After solidification of silica the particles were washed and dried at room temperature followed by calcination at 550°C. After final drying the produced silica particles were in the range between 30 and 70 µm (Fig. 1c). BET specific surface area of the produced silica after calcination was found to be 750 m²/g while the average pore diameter was 1.3 nm.

Acknowledgment

The authors wish to acknowledge the financial support of the UK Engineering and Physical Sciences Research Council. The work was undertaken as part of the DIAMOND project into Decommissioning, Immobilisation And Management Of Nuclear wastes for Disposal.