Preparation of multiple emulsions using SPG membranes: factors influencing droplet size distribution, dispersed phase flux and encapsulation yield

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is an abstract.

Metadata Record: https://dspace.lboro.ac.uk/2134/10677

Version: Accepted for publication

Publisher: Japan Membrane Society

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

![Creative Commons License](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY: Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial: You may not use this work for commercial purposes.

No Derivative Works: You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Preparation of multiple emulsions using SPG membranes: Factors influencing droplet size distribution, dispersed phase flux and encapsulation yield

G. T. Vladisavljević¹, M. Shimizu², T. Nakashima²

¹Institute of Food Technol. & Biochem., Univ. Belgrade, P.O. Box 127, YU-11081 Belgrade, Serbia. ²Miyazaki Pref. Ind. Technol. Center, 16500-2 Higashi-kaminaka, Sadowara, Miyazaki 880-0303.

Membrane emulsification (ME) involves the permeation of pure dispersed phase through a porous membrane into continuous phase (direct ME) or the passage of pre-emulsion through the membrane (premix ME [1]). In direct ME, fine droplets are directly formed at the pore openings. In premix ME, large droplets of a premix are disrupted into fine droplets inside the pores. The most suited membrane for ME is a Shirasu porous glass (SPG) membrane developed by Nakashima and Shimizu [2].

Preparation of multiple W₁/O/W₂ emulsions using multi-pass premix ME has been studied in this work. The oil phase was 5 wt. % PGPR dissolved in soybean oil. The inner aqueous phase contained 2 wt. % Ca (II)-EDTA as a marker for the determination of the encapsulation yield and 5 wt. % glucose as the osmotic additive. The outer aqueous phase contained 0.5 wt. % Tween 80, 1 wt. % sodium alginate, and 5 wt. % glucose. The primary W₁/O emulsion was prepared by means of a homomixer at 24,000 rpm. The W₁/O emulsion was then mixed with the outer aqueous phase by means of a stirring bar to prepare a W₁/O/W₂ premix. The premix was homogenized by permeation through the SPG membrane with a mean pore size of 10.7 µm and an effective membrane area of 3.75 cm². Centrifugal cells with a mean pore size of 0.2 µm were used to separate the prepared W₁/O drops from the outer aqueous phase. The Ca content in the filtrate was measured by the ICP method. The total Ca content in the internal droplets was found by breaking a prepared emulsion with acetone. The encapsulation yield was determined as the percentage of Ca which was left in the internal droplets after emulsification.

The transmembrane flux increased and asymptotically approached a constant maximum value, as the number of passes through the membrane increased (Fig. 1). The flux was higher at the smaller volume ratio of W₁/O drops, φ₀. At φ₀ = 0.3-0.5 and the volume ratio of internal droplets, φ₁ = 0.3-0.5, the mean size of W₁/O drops was independent on φ₀ and φ₁ and decreased with the number of passes. After 3 transmembrane passes, very uniform W₁/O drops were obtained (δ = 0.33-0.36), combined with a high encapsulation yield (84-88 %). At φ₁ = 0.5 the yield was smaller due to larger internal droplets.

Fig. 1 (left): The effect of number of passes on transmembrane flux. Fig. 2 (right): The effect of number of passes on mean size of W₁/O drops, encapsulation yield of internal droplets and span.

Acknowledgement. The authors wish to thank the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan for the financial support of this work.

Literature