Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: MICKLEBOROUGH, T.D. ... et al., 2009. Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells. Clinical Nutrition, 28 (1), pp. 71 - 77.

Additional Information:

- This paper was published in the journal, Clinical Nutrition [© Elsevier Ltd and European Society for Clinical Nutrition and Metabolism] and the definitive version is available at: http://dx.doi.org/10.1016/j.clnu.2008.10.012

Metadata Record: https://dspace.lboro.ac.uk/2134/11341

Version: Accepted for publication

Publisher: © Elsevier Ltd and European Society for Clinical Nutrition and Metabolism

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting pro-inflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells

1Timothy D. Mickleborough Ph.D, 1Sandra L. Tecklenburg M.S, 2Gregory S Montgomery, M.D. and 3Martin R. Lindley PhD.

1Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana. 2Section of Pediatric Pulmonology, Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, Indiana. 3Human Cellular and Molecular Research Laboratory, Loughborough University, Loughborough, LE11 3TU, United Kingdom

Correspondence:
Timothy D. Mickleborough, Ph.D.
Department of Kinesiology
Indiana University
1025. E. 7th Street, HPER 112
Bloomington, IN 47401
Phone: 812-855-0753
Fax: 812-855-3193
Email: tmickleb@indiana.edu

Running title: Fish oil and proinflammatory mediator generation
Abstract

Background & aims: The purpose of the study was to determine which of the active constituents of fish oil, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), is most effective in suppressing proinflammatory mediator generation and cytokine expression from LPS-stimulated human asthmatic alveolar macrophages (AMφ).

Methods: The AMφ were obtained from twenty one asthmatic adults using fiberoptic bronchoscopy. Cells were pretreated with DMEM, pure EPA, an EPA-rich media (45% EPA/10% DHA), pure DHA, a DHA-rich media (10% EPA/50% DHA) or LipovenosR (n-6 PUFA), and then exposed to Dulbecco’s Modified Eagle’s Medium (DMEM) (-) or LPS (+). Supernatants were analyzed for leukotriene (LT)B4, prostaglandin (PG)D2, tumor necrosis factor (TNF)-α and interleukin (IL)-1β production. Detection of TNF-α and IL-1β mRNA expression levels were quantified by reverse transcriptase polymerase chain reaction.

Results: 120 µM pure EPA and EPA-rich media significantly (p<0.05) suppressed TNF-α and IL-1β mRNA expression and the production of LTB4, PGD2 and TNF-α and IL-1β in LPS-stimulated primary AMφ cells obtained from asthmatic patients to a much greater extent than 120 µM pure DHA and DHA-rich media respectively.

Conclusions: This study has shown for the first time that EPA is a more potent inhibitor than DHA of inflammatory responses in human asthmatic AMφ cells.

Keywords: eicosapentaenoic acid, docohexaenoic acid, fish oil, asthma, proinflammatory mediators
Introduction

Over the past three decades there has been significant interest in the therapeutic potential of fish oils for various inflammatory conditions such as rheumatoid arthritis, inflammatory bowel diseases, and asthma. Fish oil, rich in omega-3 (n-3) polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), appear to have additional antiphlogistic properties primarily through their effects on the neutrophil and macrophage (Mφ) component of the inflammatory response.1-7

Eicosapentaenoic acid can compete with arachidonic acid (AA), as a substrate for cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LO) enzymes and be converted to less inflammatory eicosanoids.6,8 At present the mechanism(s) underpinning the anti-inflammatory effects of DHA are unclear, but may be related to altered gene transcription and translation via direct or indirect actions on intracellular signaling pathways.9-11 In addition, n-3 PUFA-derived mediators such as lipoxin, docosatrienes resolvins and neuroprotectins may also have anti-inflammatory, pro-resolving and protective properties.12

The observational evidence on fish oil effects has been relatively consistent in demonstrating protection against asthma and/or allergy in relation to a high intake, and ecological and other cross-sectional data support the hypothesis that n-6 PUFA may increase and n-3 PUFA may decrease asthma risk.13 While the clinical data on the effect of fish oil supplementation in asthma has been equivocal 14 supplementing the diet with fish oil in individuals with exercise-induced asthma (EIA) has yielded promising results.15,16 Our laboratory has shown that 3 weeks of fish oil supplementation reduced the severity of EIA, airway inflammation and bronchodilator use, and improved asthma symptoms scores in elite athletes15 and asthmatic individuals.16

The majority of studies investigating the effects of n-3 PUFA on asthma/EIA have either employed fish oils rich in EPA or oils which contain a heterogeneous blend of EPA and DHA. Only a few studies have examined the effects of supplementing asthmatic patients with pure EPA and/or DHA, with conflicting results.14 Data is therefore insufficient to make recommendations for intake of specific n-3 PUFA in asthma, e.g. EPA versus DHA versus EPA + DHA combined.17 Although many studies
have investigated the effects of EPA and DHA on macrophage function in animal models and cell lines, there is little evidence about the effects of these lipids on primary human macrophages obtained from asthmatic patients.

Therefore, the main aim of this study was to compare the individual effects of EPA and DHA, and a variety of heterogeneous blends of EPA and DHA, on eicosanoid and cytokine generation from LPS-stimulated human asthmatic alveolar macrophages (AMφ). In addition, the effects of EPA and DHA on cytokine mRNA expression were investigated in the LPS-stimulated AMφ.

Methods

Twenty non-smoking adults with asthma were recruited to this study. Asthma was diagnosed by a history of recurrent wheezing and chest tightness and a previous physician diagnosis. All subjects had clinically treated mild-to-moderate persistent asthma, with an FEV\(_1\) greater than 70% of predicted\(^{18}\). Inhaled corticosteroids, 5-lipoxygenase inhibitors and leukotriene receptor antagonists were withheld for 4 weeks prior to fiberoptic bronchoscopy. Subjects were also excluded if they had a history of taking \(n\)-3 PUFA supplements or consumed more than one fish meal per week. A group of nonasthmatic (control) subjects was not included in the present study as it has been shown that fish oil supplementation does not alter pulmonary function or inflammatory mediator generation in this population\(^{15}\). The local Institutional Research Ethics Committee approved the study protocol.

Fiberoptic Bronchoscopy.

Fiberoptic bronchoscopy was used to obtain BALF from each subject. Using local anesthesia with lidocaine (2% wt/vol) to the upper airways and larynx, a fiberoptic bronchoscope was passed through the nasal passages into the trachea. The bronchoscope was wedged in the right middle lobe and 4 × 60-ml aliquots of prewarmed sterile 0.9% NaCl solution were instilled. This solution was aspirated through the bronchoscope, collected in prechilled glass bottles, and stored on ice and processed within 30 min.
Separation of AMφ from BALF.

AMφ cells were separated from BALF using previously described methods, with slight modifications. Briefly, the BALF was filtered through a single layer of coarse sterile gauze to remove mucus clumps and then centrifuged at 1,000 g for 10 min at 4° C to obtain a cell pellet. The cell pellet was washed once in 50 ml of Ca\(^{2+}\)/Mg\(^{2+}\) free Hanks' balanced salt solution (HBSS). The cells were counted on a hemocytometer slide using a Kimura counterstain and viability assessed by the trypan blue exclusion test. Cytospins were performed, using \(10^4\) cells per slide, and stained with May-Grunwald-Giemsa in order to obtain differential cell counts (Table 1). The remaining cells were resuspended at a concentration of \(2 \times 10^6\) AMφ per milliliter in RPMI 1640 medium supplemented with 10% (vol/vol) fetal calf serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin. \(2 \times 10^6\) AMφ/well were plated onto 6-well plates and allowed to adhere for 90 min in a humidified incubator in 95% air, 5% CO\(_2\) (vol/vol), at 37° C. Nonadherent cells were removed by washing three times with RPMI 1640 medium, leaving the adherent macrophages. The resulting AMφ population was > 95% pure, as assessed by staining and morphologic analysis. The AMφ from each individual were harvested with a cell scraper and combined into one aliquot.

Experimental Design.

Cells were divided into six treatment groups, pure EPA \([\text{cis}-5, 8, 11, 14, 17\text{-eicosapentanoic acid (Sigma-Aldrich, St. Louis, MO)}\], an EPA-rich media \[(\text{EPAX 4510 TG (45% EPA/10% DHA (Pronova Biocare, Lysaker, Norway)}\], pure DHA \([\text{cis}-4, 7, 10, 13, 16, 19\text{-docosahexanoic acid (Sigma-Aldrich, St. Louis, MO)}\], a DHA-rich media \[(\text{EPAX 1050 TG (10% EPA/50% DHA (Pronova Biocare, Lysaker, Norway)}\], Lipovenos® (Fresenius-Kabi, Bad-Homburg, Germany: an \(n\)-6 PUFA) or Dulbecco’s Modified Eagle’s Medium (DMEM) (control media).

All fatty acids were dissolved in distilled H\(_2\)O, aliquoted, and stored under an N\(_2\) stream, and stored at -80oC for no longer than 1 week prior to use. EPAX 4510 TG is a triglyceridic oil containing approximately 45% EPA and 10% DHA, with saturated fatty acids and monounsaturated fatty acids.
comprising 9-12% and 20-24% respectively. EPAX 1050 TG is triglyceridic oil containing approximately 10% EPA and 50% DHA, with saturated fatty acids and monounsaturated fatty acids comprising 2-10% and 5-15% respectively.

AMφ cells were suspended in Dulbecco’s modified Eagle’s medium (DMEM) (Mediatech, Herndon, VA), supplemented with 10% heat inactivated endotoxin-free fetal bovine serum (FBS, Intergen), 100 U/ml penicillin, and 100 U/ml streptomycin (GIBCO-BRL) and incubated at 37°C in 5% CO₂. In all experiments, cells were plated in 24-well plates at a density of 1 x 10⁶ cells/well and allowed to adhere for 2 hr and then incubated with either a high-dose (120µM) or low dose (25µM) (of a 100mM stock solution) of pure EPA, pure DHA, EPAX 4510, EPAX 1050 or LipovenosR (n-6 PUFA) for 4 hr². The medium was then aspirated and the cells rinsed with 10 ml of sterile PBS twice. After washing the pure EPA, pure DHA, EPAX 4510 TG, EPAX 1050 TG or LipovenosR media from the plates, fresh DMEM supplemented with 10% FBS and L-glutamine was used to carry out all subsequent incubations with or without LPS. The cells were then stimulated with LPS (1µg/ml) (BD Diagnostics, Sparks, MD) or incubated with medium alone for 3 hr². The supernatant was gently aspirated and stored at -70°C for subsequent competitive enzyme immunoassay (EIA) analysis of leukotriene (LT) B₄ (Cayman Chemical, Ann Arbor, MI), prostaglandin (PG) D₂ methoxime (MOX) (Cayman Chemical, Ann Arbor, MI), tumor necrosis factor (TNF)-α (Cayman Chemical, Ann Arbor, MI), and interleukin (IL)-1β (Cayman Chemical, Ann Arbor, MI) using previously described methods¹⁶. Because PGD₂ is a relatively unstable compound, we measured PGD₃-MOX), a stable derivative of PGD₂.

Evaluation of cytokine mRNA expression

Total RNA was isolated from macrophage monolayers using a commercially available kit (Qiagen, Valencia, CA) following the protocol provided. Detection of mRNA by real-time polymerase chain reaction was performed on an ABI-PRISM® 7700 Sequence Detector (Perkin-Elmer Applied Biosystems, Foster City, CA, USA) as previously described¹⁰. The TaqMan real-time PCR was performed on the cytokines TNF-α and IL-1β using pre-developed assay reagent kits. All reagents
necessary for running a TaqMan real time PCR assay were purchased from Perkin-Elmer Applied
Biosystems. Each 25-µl reaction contained forward and reverse primers, 20 ng of cDNA, 2x TaqMan
Universal PCR Mastermix and TaqMan probe. The primers (Life Technologies, Grand Island, NY) and
probes (Applied Biosystems, Foster City, CA) used in the TNF-α assay were: forward primer, 5’-
TGATCCGAGACGTGGAA -3’; reverse primer, 5’- ACCGCCTGGAGTTCTGGAA -3’; and for the
TaqMan Probe (5’ 6-FAM, 3’ TAMRA labeled), TGGCAGAAGAGGCACCTCCCCCAA. For the IL-1β
assay: forward primer, 5’-CTGATGAGCCCTAAACAGATGAAG – 3’; reverse, 5’-
GGTCGGAGATTCGTAGCAGCTGGAT – 3’; and for the TaqMan Probe (5’ 6-FAM, 3’ TAMRA
labeled), ATGAACAACAAAAATGCCTCGTGTCTGCTG. All reactions were performed in triplicate
under the following conditions: 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15
s and 60°C for 1 min. Relative expression levels of IL-1β and TNF-α mRNA were calculated using the 2^ΔΔCT
method after confirmation that the efficiency of the real-time PCR reaction was similar for the 2
target genes over a range of template concentrations. The fold change for each target gene, normalized
to GAPDH, was calculated for each sample using the equation x (amount of target) = 2^ΔΔCT. The mean (+
SD) fold change in gene expression was then determined from the triplicate samples, and expressed
relative to vehicle control (DMEM).

Statistical Analysis

Data were analyzed using the SPSS version 15 statistical software (SPSS Inc., Chicago, IL,
USA). A one-way ANOVA was used to analyze the data. Where a significant F-ratio was found, Fisher’s
protected least-square difference post-hoc test was used to detect differences in group means. All reported
p-values were considered significant at the 0.05 level.
Results

The fluid recovered, total cell count and percent differential airway cell counts recovered from bronchial samples are presented in Table 1. The unstimulated AMφ cells did not demonstrate any significant differences (p>0.05) in LTB₄, PGD₂, TNF-α or IL-1β production among the high dose (120 µM) treatment groups (Figure 1, panel A-D). DMEM pretreated controls demonstrated a significant increase (p<0.05) in LTB₄, PGD₂, TNF-α and IL-1β production in response to LPS stimulation (Figure 1, panel A-D). The inhibitory effect of 120 µM pure EPA on LPS-stimulated LTB₄, PGD₂, TNF-α and IL-1β production was significantly (p<0.05) greater than that of 120 µM pure DHA, EPAX4510, EPAX1050 and Lipovenos®. EPA and EPAX 4510 pretreatment significantly reduced (p<0.05) LPS-stimulated LTB₄, PGD₂, TNF-α and IL-1β production by 84.6% and 66.3%, 81.7% and 60.5%, 90.2% and 72.9%, and 88.2% and 73.6% respectively compared to DMEM pretreatment (Figure 1, panel A-D). Similarly, 120 µM pure DHA and EPAX 1050 pretreatment significantly decreased (p<0.05) LPS-stimulated LTB₄, PGD₂, TNF-α and IL-1β production by 50.3%, 39.7%, 18.3%, 51.7% and 31.5%, 51.6% and 33.2% respectively compared to DMEM pretreatment (Figure 1, panel A-D). In contrast Lipovenos® had no significant (p>0.05) effect on LPS-induction of pro-inflammatory mediators compared to control cells (Figure 1, panel A-D).

Since differences in LPS-stimulated eicosanoid and cytokine production were observed at the high dose (120 µM) we also examined whether these differences would be noticeable at a lower dose of n-3 PUFA (25µM). Figure 2 (panel A-B) presents the effects of LPS-stimulated LTB₄ and TNF-α production in AMφ cells pretreated with 25 µM pure EPA, pure DHA, EPAX4510, EPAX1050 and Lipovenos®. The anti-inflammatory response at the 25µM dose followed a similar pattern as the 120µM n-3 PUFA dose, but had significantly (p<0.05) less of an inhibitory effect on LPS-stimulated AMφ LTB₄ and TNF-α production (Figure 2, panel A-B). A comparable effect was seen for LPS-stimulated PGD₂ and IL-1β production (data not shown).

The effect of the high dose (120µM) and low dose (25µM) n-3PUFA was also examined at the transcriptional level. We investigated the effects of 25µM and 120µM pure DHA, EPAX4510,
EPAX1050 and Lipovenos on LPS-stimulated AMφ TNF-α and IL-1β mRNA expression (Figure 3, panel A-B). The inhibitory effect of 120 µM pure-EPA on LPS-stimulated TNF-α and IL-1β mRNA expression was significantly greater (p < 0.05) than that of 120 µM pure-DHA, EPAX4510, EPAX1050 and Lipovenos (Figure 3, panel A). Interestingly, the effect of 25 µM n-3 PUFA on LPS-stimulated TNF-α and IL-1β mRNA expression followed a similar pattern to the 120µM pretreated cells (Figure 3, panel A) but had significantly less (p < 0.05) of an inhibitory effect (Figure 3, panel B).

Discussion

This study has demonstrated for the first time that pure EPA media reduced TNF-α and IL-1β mRNA expression and the production of LTB₄, PGD₂ and TNF-α and IL-1β from LPS-stimulated primary AMφ cells obtained from asthmatic patients to a much greater extent than pure DHA. Interestingly, the EPA-rich media (EPAX 4510) significantly reduced cytokine mRNA expression and generation of eicosanoids and cytokines from LPS-stimulated AMφ cells to a much greater degree than both the pure DHA and the DHA-rich media (EPAX 1050), suggesting that the greater the EPA content of an n-3 PUFA formulation the greater the eicosanoid and cytokine reduction. Whilst these experiments were conducted at a comparatively high n-3 PUFA dose (120 µM) we also observed a similar pattern of LPS-stimulated AMφ cytokine and eicosanoid production and cytokine mRNA expression inhibition on a much lower n-3 PUFA concentration (25 µM). Although our findings agree with a number of human studies that have shown that fish oil suppressed cytokine production in LPS-stimulated mononuclear cells ⁴, ²³, ²⁴, other studies have not shown this response ²⁵-²⁷.

While there are a few studies that have assessed the efficacy of n-3 PUFA on cytokine production using human THP-1 monocytes ¹⁰, ²⁸, ²⁹ and murine macrophages ², ²⁷, ²⁰, our study is the first to assess the efficacy of a variety of n-3 PUFA blends on eicosanoid and cytokine production from AMφ obtained directly from human asthmatic patients. Our data, for the most part, agree and expand the few studies that have examined either the individual or combined effects of EPA and DHA on macrophage function in vitro. Lo et al. ⁷ observed a reduction in TNF-α production and mRNA expression in LPS-stimulated
murine RAW macrophage incubated in the presence of 114 µM EPA for 24 h. Similarly Zhao et al. has shown that LPS-stimulated human THP-1 monocytes pretreated with 60µM EPA for 24 h significantly decreased TNF-α production and mRNA expression. In contrast Zhao et al. has shown in a follow-up study that human THP-1 monocytes pretreated with 100µM DHA for 24 h significantly reduced LPS (1µg/ml)-stimulated IL-6, IL-1β and TNF-α production and mRNA expression. Chu and coworkers have reported using low doses of EPA (10µM) and DHA (10µM) significantly reduced TNF-α and IL-β generation from LPS-stimulated human THP-1 monocytes. It has been demonstrated that murine RAW 264.7 macrophages pretreated for 4 h with Omegaven®, a high purity emulsion containing 1.25 - 2.82 g EPA and 1.44 - 3.09 g DHA, resulted in a significant suppression of LPS (1µg/ml)-stimulated TNF-α production by 48% and TNF-α mRNA expression by 47% compared to control media, while Lipovenos® (an n-6 PUFA emulsion) did not alter cytokine production compared to control medium alone.

Recently Weldon et al. sought to investigate the differential effects of pure EPA and DHA on cytokine expression from activated human THP-1 monocyte-derived macrophages in vitro. Equivalent doses of EPA and DHA significantly decreased LPS-stimulated THP-1 monocyte TNF-α, IL-1β and TNF-α production and mRNA expression compared to control cells. However, whether at a relatively high dose (100µM) or low dose (25µM), DHA had a much greater inhibitory effect on cytokine production and mRNA expression than the equivalent EPA dose. This is in contrast with the findings from the present study which found that EPA at a high and low dose had a significantly greater inhibitory effect on LPS-stimulated human AMφ LTB₄, PGD₂, TNF-α- and IL-β generation and TNF-α- and IL-β mRNA expression compared to a comparable DHA dose. The divergent findings between the present study and the Weldon et al. study are difficult to reconcile, but may in part be related to the use of different cell types used. For example, the present study used primary human AMφ taken directly from the airways of asthmatic patients, whereas the cell line used in the experiments by Weldon et al. were human THP-1 monocytes, which although may behave like native monocyte-derived macrophages in
comparison to other human myeloid cell lines, may express a different physiologic response compared to primary human AMφ when exposed to a n-3 PUFA.

The present study has demonstrated that n-3 PUFA inhibits LTB₄ and PGD₂ from LPS-stimulated human AMφ. Our results concur with several studies in which dietary supplementation with EPA and DHA reduced inflammatory eicosanoids such as products generated via the 5-lipoxygenase pathway of neutrophils and monocytes and an attenuation of LTB₄-mediated chemotaxis⁶, and decreased PGE₂ production in LPS-stimulated murine RAW 264.7 cells pretreated with Omegaven® compared to control cells³.

In the present study we evaluated the release of particular proinflammatory eicosanoids, derived from both the cyclooxygenase (COX) and 5-lipoxygenase (5-LO) pathway such as PGD₂ and LTB₄, and a few key proinflammatory cytokines (IL-1β and TNF-α) that have been directly implicated in the pathogenesis of asthma. LTB₄ is a potent neutrophil chemoattractant factor in the airways ³², while PGD₂ is a potent bronchoconstrictor and is thought to play a role in pathogenesis of asthma, in particular during the early asthmatic response to allergen³³. IL-1β induces airway neutrophilia, and increased expression of IL-1β in asthmatic airway epithelium has been reported, together with an increased number of AMφ expressing IL-1β ³⁴. TNF-α is also released from AMφ from asthmatic patients after allergen challenge ³⁵, and may have an important amplifying effect in asthmatic inflammation ³⁶. Since, both IL-1β and TNF-α both activate and are activated by nuclear factor-kappaB (NF-κB), this positive regulatory loop may amplify and perpetuate the asthmatic inflammatory response ³⁷.

Our findings indicate that that EPA is a more potent inhibitor than DHA of LPS-stimulated eicosanoid and cytokine generation from human asthmatic AMφ. At present the data from the few studies assessing the comparative effects of EPA and DHA on in vitro inflammatory mediator generation is equivocal. Khalfoun et al. ³⁸ have demonstrated a more potent inhibition of IL-6 from LPS-stimulated lymphocytes on EPA compared to DHA, while Weldon et al. ¹⁰ more recently demonstrated a more potent inhibition on DHA compared with EPA in inhibiting LPS-stimulated human THP-1 monocyte cytokine production. On the other hand Moon et al. ³⁹ observed no difference between EPA and DHA on IL-6
secretion from murine macrophages, and Chu et al. \(^{28}\) observed no difference between EPA and DHA on TNF-\(\alpha\) and IL-1\(\beta\) production from human THP-1 monocytes.

The biological mechanisms underpinning the more potent anti-inflammatory effects of EPA compared to DHA in the present study may be related to diverse mechanisms of action. EPA can cause dual inhibition of cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) pathways. EPA is a much less preferred substrate compared with AA for both pathways, and generally by substrate competition inhibits release of AA derived eicosanoids, thus reducing the generation of proinflammatory ‘tetraene’ 4-series leukotrienes (LTs) and 2-series prostanoids, and production of cytokines from inflammatory cells \(^{6,8}\). EPA-derived metabolites have lower biological activity compared to their analogous AA-derivatives \(^{40}\).

We have previously shown that a fish oil diet decreased LTB\(_4\) and increased LTB\(_5\) generation from activated polymorphonuclear leukocytes obtained from asthmatic patients \(^{16}\). In addition, the anti-inflammatory effects of EPA may occur by modulating intracellular signal pathways which, in turn, influence gene activation and cytokine production. Lo and coworkers \(^{7}\) showed that RAW macrophages incubated in EPA-rich media altered NF-\(\kappa\)B activity (suppression of p65/p50 dimer), while Zhao et al. \(^{30}\) demonstrated that EPA inhibited LPS-induced NF-\(\kappa\)B activation in human THP-1 monocytes. Lipopolysaccharide stimulation of monocytes activates several intracellular pathways, including I\(\kappa\)B kinase and mitogen-activated kinase (MAPK) pathways (ERK, JNK and p38). These signaling pathways activate a variety of transcription factors such as NF-\(\kappa\)B and activator-protein 1 (AP-1), leading to the activation of cytokine gene expression \(^{41}\). It has been reported that LPS-stimulated CD14 expression and toll-like receptor (TLR)-4-induced signaling pathways are down-regulated by \(n\)-3 PUFA \(^{42}\), providing mechanisms through which EPA may exert its effects on both AP-1 and NF-\(\kappa\)B activation.

Although DHA may have similar anti-inflammatory effects as EPA, it does not act by direct competition with AA. DHA can decrease the release of AA from membrane phospholipids by decreasing phospholipase A2 activity, and decreasing the responsiveness of TLR-4 to LPS, thereby suppressing NF-\(\kappa\)B activation and subsequent inflammatory gene transcription \(^{11}\). Komatsu et al. \(^{43}\) has shown that 60 \(\mu\)M of DHA inhibited NF-\(\kappa\)B activity in interferon-\(\gamma\) and LPS-stimulated RAW
macrophages, while Weldon et al. recently demonstrated that DHA was more effective than EPA in inhibiting p65 expression and increased IκBα expression in LPS-stimulated THP-1 monocytes. Interestingly, Novak and coworkers \(^2\) have reported reduced LPS-stimulated RAW macrophage NF-κB activity pre-treated with an \(n\)-3 PUFA lipid emulsion (Omegaven\(^\circledR\)). The inhibition of NF-κB activity by either EPA or DHA is important especially since AMφ and bronchial epithelial cells from stable asthmatics exhibit increased NF-κB activity compared with cells from healthy individuals \(^3\), and therefore it has been suggested that NF-κB plays a pivotal role in the pathogenesis of asthma \(^3, 4, 4\).

Interestingly, Li and coworkers \(^4\) recently demonstrated that EPA and DHA down-regulate LPS-induced activation of NF-κB via a peroxisome proliferator-activated receptor (PPAR)-\(\gamma\)-dependent pathway in human kidney cells. These results suggest that PPAR-\(\gamma\) activation by EPA and DHA may be one of the underlying mechanisms for the beneficial effects of fish oil. Due to the fact that a new class of mediator families derived from fish oil, the EPA-and DHA-derived resolvins (RvE1 and RvD1) and the DHA-derived protectin (PD1), which act locally, and possess potent anti-inflammatory novel bioactions, suggest potentially novel therapeutic treatment strategies for asthma \(^5\). In addition, since we have previously shown that the amount of LTB\(_5\) generated from activated PMNLs was markedly increased following fish oil supplementation in asthmatic patients \(^6\), further studies should investigate the effect of fish oil on EPA and DHA-derived (anti-inflammatory) mediators generated from human asthmatic AMφ \(^7\).

In conclusion the present study has shown for the first time that EPA is a more potent inhibitor than DHA of inflammatory responses in human asthmatic AMφ cells. In addition, the present study has shown that the greater the EPA content of a fish oil formulation the greater the inhibition of the inflammatory response. Elucidating the mechanism of this modulation could help us to understand how dietary \(n\)-3 PUFA achieves their specific effects on airway inflammation in asthmatic individuals. The clinical relevance of the present study, along with previous work from our group \(^8, 9\), suggest that EPA-rich fish oil may provide a therapeutic option for adults with asthma. In view of the clinical consequences,
these findings point towards prophylactic and acute therapeutic effects of fish oil supplementation in inflammatory diseases such as asthma. It is possible that pharmacotherapy could be decreased in some patients with asthma in concert with increased fish-oil ingestion if both the drug and n-3 PUFA are exerting their therapeutic effects through the same molecular actions.

Conflict of Interest

The authors report no conflict of interest.

Acknowledgments

The authors would like to thank the participating asthmatic adults for volunteering to this study.
References

26. Kew S, Mesa MD, Tricon S, \textit{et al.} Effects of oils rich in eicosapentaenoic and
docosahexaenoic acids on immune cell composition and function in healthy humans. \textit{Am

27. Schmidt EB, Varming K, Moller JM, \textit{et al.} No effect of a very low dose of n-3 fatty acids

endotoxin-induced monocytic tissue factor activation is mediated by the depressed

29. Zhao Y, Chen LH. Eicosapentaenoic acid prevents lipopolysaccharide-stimulated DNA
binding of activator protein-1 and c-Jun N-terminal kinase activity. \textit{J Nutr Biochem
2005;16(2):78-84.}

TNF-alpha expression by preventing NF-kappaB activation. \textit{J Am Coll Nutr
2004;23(1):71-8.}

32. Alam R. Chemokines in allergic inflammation. \textit{J Allergy Clin Immunol} 1997;99(3):273-
7.

is mediated only in part by the thromboxane prostanoid receptor. \textit{Eur Respir J
1995;8(3):411-5.}

Figure Legends

Figure 1. Effect 120 µM EPA-rich media (EPAX 4510), pure EPA, pure DHA, DHA-rich media (EPAX 1050) and LipovenosR (n-6 PUFA) on LTB₄ (panel A), PGD₂ (panel B), TNF-α (panel C) and IL-1β (panel D) production by LPS-stimulated human AMφ. The data represent mean ± SD from six separate experiments, each done in triplicate. * p < 0.05 vs. DMEM + LPS. ψ p < 0.05 vs. 25 µM treatment within each inflammatory mediator. A difference in letter (a through e) designates significant differences (p<0.05) between treatments (EPAX 4510, EPA, DHA, EPAX 1050 and Lipovenos®).

Figure 2. Effect 25 µM EPA-rich media (EPAX 4510), pure EPA, pure DHA, DHA-rich media (EPAX 1050) and LipovenosR (n-6 PUFA) on LTB₄ (panel A) and TNF-α (panel B) production by LPS-stimulated human AMφ. The data represent mean ± SD from six separate experiments, each done in triplicate. * p < 0.05 vs. DMEM + LPS. A difference in letter (a through e) designates significant differences (p<0.05) between treatments (EPAX 4510, EPA, DHA, EPAX 1050 and Lipovenos®).

Figure 3. Effect 120 µM (panel A) and 25 µM (panel B) EPA-rich media (EPAX 4510), pure EPA, pure DHA, DHA-rich media (EPAX 1050) and LipovenosR (n-6 PUFA) on TNF-α and IL-1β mRNA levels in LPS-stimulated human alveolar macrophages. TNF- and IL-1 mRNA levels were normalized to GAPDH and expressed relative to DMEM. The data represent mean ± SD. * p < 0.05 relative to DMEM. ψ p < 0.05 vs. 25 µM treatment within each cytokine. A difference in letter (a through e) designates a significant difference (p<0.05) between each treatment (EPAX 4510, EPA, DHA, EPAX 1050 and Lipovenos®).