Quasiparticle lifetimes in the charged Bose gas and the cuprates

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This article was submitted for publication in the Journal of Physics: Condensed Matter [© IOP Publishing] and the definitive version is available at: http://dx.doi.org/10.1088/0953-8984/13/20/104

Metadata Record: https://dspace.lboro.ac.uk/2134/1156

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Quasiparticle lifetimes in the charged Bose gas and the cuprates

A.S. Alexandrov and C. J. Dent

Department of Physics, Loughborough University, Loughborough LE11 3TU, U.K.

The scattering cross section of a Coulomb potential screened by a charged Bose gas (CBG) is calculated both above and below the Bose-Einstein condensation temperature, using the variable phase method. In contrast with the BCS superconductor, the screened scattering potential and quasiparticle lifetime are found to be very different in the superconducting and normal states. We apply the result to explain the appearance of a sharp peak in the ARPES spectra in some cuprates below the superconducting transition.

There is a growing body of evidence that cuprate superconductivity is due to the condensation of bipolarons, local bosonic pairs of carriers bound by the strong electron-phonon interaction. The theory has been applied to explain the upper critical field, magnetic susceptibility, anisotropy, isotope effect on the superfluid density, using the variable phase method. In contrast with the normal state, the screening of the scattering potential by a charged Bose gas is calculated both above and below the transition in the cuprates is relatively sharp at low temperatures in the Brillouin zone that the ARPES peak in the bispectral state, but that it almost disappears below the transition in the cuprates.

First we calculate the scattering cross-section of a charged particle (mass m, charge e) scattered by a static Coulomb potential $V(r)$ screened by the CBG. The general theory of potential scattering in terms of phase shifts was developed in the earliest days of quantum mechanics (see for instance [13]). While in principle this allows scattering cross sections to be calculated for an arbitrary potential, in practice the equations for the radial part of the wavefunction may only be solved analytically for a few potentials, and in the standard formulation are not in a suitable form for numerical computation. The ‘variable phase’ approach [4] solves this problem by making the phase shifts functions of the radial coordinate, and then the Schrodinger equation for each radial component of the wavefunction reduces to a first order differential equation for the corresponding phase shift.

In dimensionless units ($\hbar = 2m = 1$), the Schrodinger equation for the radial part of the angular momentum l component of the wavefunction of a particle with wavevector k undergoing potential scattering is

$$u''_l(r) + \left[k^2 - l(l+1)/r^2 - V(r) \right] u_l(r) = 0. \quad (1)$$

The scattering phase shift δ_l is obtained by comparison with the asymptotic relation

$$u_l(r) \xrightarrow{r \to \infty} \sin(kr - l\pi/2 + \delta_l), \quad (2)$$

and the scattering cross section is then

$$\sigma = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} \sin^2 \delta_l. \quad (3)$$

In the variable phase method [14], we must satisfy the condition that

$$V(r) \xrightarrow{r \to 0} V_0r^{-n}, \quad (4)$$

with $n < 2$. The angular momentum l phase shift is then

$$\delta_l = \lim_{r \to \infty} \delta_l(r) \quad (5)$$

where the phase function $\delta_l(r)$ satisfies the phase equation

$$\delta''_l(r) - k^{-1}V(r) \left[\cos \delta_l(r) \tilde{j}_l(kr) - \sin \delta_l(r) \tilde{n}_l(kr) \right]^2, \quad (6)$$

with

$$\tilde{j}_l(x) \xrightarrow{x \to 0} \frac{V_0x^{-n}}{k^2} \frac{(kr)^{2l+3}}{(2l+3-n)(2l+1)!!}, \quad (7)$$

and $j_l(x)$ and $n_l(x)$ are the Riccati-Bessel functions [4]. In the $l = 0$ case, the phase equation reduces to
\[\delta_0'(r) = -k^{-1} V(r) \sin^2[kr + \delta_0(r)]. \]

(8)

In the slow particle limit, we may also neglect higher order contributions to the scattering cross section, so that

\[\sigma = \frac{4\pi}{k^2} \sin^2 \delta_0. \]

(9)

The effective potential about a point charge in the CBG was calculated by Hore and Frankel [15]. The static dielectric function of the CBG is:

\[\epsilon(q, 0) = 1 + \sum_p \frac{4\pi (e^*)^2}{q^2 \Omega} \left(\frac{F_0(p) - F_0(p - q)}{-(1/m_b)p \cdot q + q^2/2m_b} \right), \]

(10)

in which \(e^* = 2e \) the boson charge, and \(F_0(p) = (e^{(p^2/2m_b - \mu)/k_BT} - 1)^{-1} \), the Bose distribution function. It has been shown [15] that Eq. (10) is valid even beyond the simplest random phase approximation assumed in Ref. [13]. Eliminating the chemical potential, for small \(q \) the dielectric function for \(T < T_c \) is

\[\epsilon(q, 0) = 1 + \frac{4m_b^2 \omega_p^2}{q^4} \left[1 - \left(\frac{T}{T_c} \right)^{3/2} \right] + O(1/q^4), \]

(11)

and for \(T \to \infty \) is

\[\epsilon(q, 0) = 1 + \frac{m_b \omega_p^2}{q^2 k_BT} \left[1 - \left(\frac{T}{T_c} \right)^{3/2} + \right] + O(q^0), \]

(12)

with \(\omega_p^2 = 4\pi (e^*)^2 \rho/m_b \), and \(\rho \) the boson density. If the unscreened scattering potential is the Coulomb potential \(V(r) = V_0/r \), then performing the inverse Fourier transforms, one finds that for \(T < T_c \) [13]

\[\lim_{r \to \infty} V(r) = \frac{V_0}{r} \exp[-K_s r] \cos[K_s r] \equiv V_s(r) \]

(13)

with

\[K_s = \left(\frac{m_b^2 \omega_p^2}{k_BT} \left[1 - \left(\frac{T}{T_c} \right)^{3/2} \right] \right)^{1/4}, \]

(14)

and for \(T \to \infty \),

\[\lim_{r \to \infty} V(r) = \frac{V_0}{r} \exp[-K_n r] \equiv V_n(r) \]

(15)

with

\[K_n = \left(\frac{m_b \omega_p^2}{k_BT} \right)^{1/2} \left[1 + \frac{\zeta(3/2)}{23/2} \left(\frac{T_c}{T} \right)^{3/2} + \right]^{1/2}. \]

(16)

The \(T < T_c \) result is exact for all \(r \) at \(T = 0 \).

There are two further important analytical results; the first (Levinson’s Theorem [14]) states that for ‘regular’ potentials (which include all those which we shall be concerned with), the zero-energy phase shift is equal to \(\pi \) multiplied by the number of bound states of the potential. The second is the well-known Wigner resonance scattering formula [13], states that for slow particle scattering of a particle with energy \(E \) off a potential with a shallow bound state of binding energy \(\epsilon \approx E \) the total scattering cross section is

\[\sigma = \frac{2\pi}{m} \frac{1}{E + |\epsilon|}. \]

(17)

We have used this to check that our calculation method works correctly by comparing our results with Eq. (17) for various potentials with shallow bound states (Fig. 1).
a quantitative conclusion about the quasiparticle lifetime at different temperatures in the cuprates. However, we can provide an important general conclusion about the relative value of the cross-sections in the normal and superconducting states.

At zero temperature, the screening wavevector is \(K_0 = (m_0 \omega_p)^{1/2} \), and at a temperature \(T \) well above the transition, it is \(K_{\alpha T_c} = (m_0 \omega_p^2 / k_B \alpha T_c)^{1/2} \). Substituting \(\omega_p \) and \(k_B T_c = 3.3 m_0^{2/3} / n_b \), we obtain:

\[
\frac{K_{\alpha T_c}}{K_0} = \left(\frac{2.1 e^3}{\ell_0 \rho^1/\alpha} \right)^{1/2}.
\]

From this, we see that the ratio is only marginally dependent on the boson density, so substituting for \(\rho = 10^{21} \text{cm}^{-3} \), \(e \), and \(m_e \), we obtain

\[
\frac{K_{\alpha T_c}}{K_0} = 3.0 \left(\frac{m_0 / m_e}{\ell_0 / \alpha} \right)^{1/2}.
\]

With realistic boson masses and dielectric constants, \(K_{\alpha T_c} \) and \(K_0 \), while different, are of the same order of magnitude. In the isotropic model, if the screening wavevectors are such that neither the normal state or condensate impurity potentials have bound states, with these parameters it would then follow that the quasiparticle lifetime is much greater in the superconducting state, Fig. 2b. We propose that this effect also occurs in the realistic non-isotropic model, and could then explain the appearance of a sharp ARPES peak in the superconducting state of BSCCO. With doping, the screening radius decreases both in the normal, Eq. 16, and superconducting states, Eq. 14. This explains another fascinating experimental observation, namely the strange doping dependence of the ARPES linewidth. Optimally and overdoped cuprates, due to the higher carrier density, have shorter range scattering potentials with smaller cross-sections compared with the underdoped cuprates.

In summary, we have calculated the scattering cross section of a Coulomb scattering centre in the charged Bose gas both above and below the condensation temperature. In contrast to the BCS superconductor, the scattering potential in the CBG is different in the normal and superconducting states. This is because the coherence length in the CBG is the same (at \(T = 0 \)) as the screening radius \(\ell_0 \), while in the BCS superconductor it is a few orders of magnitude larger. We find that for the realistic parameters, the scattering cross section above \(T_c \) in the bismuth cuprates might be around three orders of magnitude larger than at \(T = 0 \). We propose that the appearance of a sharp peak in the ARPES spectra of BSCCO below the superconducting transition and its doping dependence is due to the condensate screening of the scattering potential. We acknowledge valuable discussions with M. Portnoi. CJD was supported financially in this work by the UK EPSRC.

K for the potentials (i) $V_n(r) = -(1/r)e^{-Knr}$ and (ii) $V_s(r) = -(1/r)e^{-Ksr} \cos(Ksr)$. (b) Plot of σ_n/σ_s for a range of $K_n = K_s$ in which neither potential has any bound states. In each case the units are those used to derive the phase equation.