Using dynamic geometry to introduce calculus concepts: CalGeo and the case of derivative

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: BIZA, I. and ZACHARIDES, T., 2008. Using dynamic geometry to introduce calculus concepts: CalGeo and the case of derivative. Research in Mathematics Education, 10 (1), pp. 89 - 90.

Additional Information:

- This article was published in the journal, Research in Mathematics Education [Routledge (Taylor & Francis) © British Society for Research into Learning Mathematics] and the definitive version is available at: http://dx.doi.org/10.1080/14794800801916655

Metadata Record: https://dspace.lboro.ac.uk/2134/11590

Version: Accepted for publication

Publisher: Routledge (Taylor & Francis) © British Society for Research into Learning Mathematics

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Using Dynamic Geometry to introduce Calculus concepts: CalGeo and the case of derivative
Irene Biza and Theodossios Zachariades
Department of Mathematics, University of Athens (Greece)
Email: empiza@math.uoa.gr

Calculus has a wide field of applications in other disciplines and constitutes a basic part of the mathematical curriculum of secondary education. Nevertheless research shows that the majority of students face serious problems in understanding basic Calculus concepts (Artigue 1997).

The work presented in this paper originates in a three-year European funded project called CalGeo (Teaching Calculus Using Dynamic Geometric Tools). In this project a course for mathematics teachers was designed which employs dynamic geometry tools for teaching Calculus. Groups of in-service teachers in each of the participating countries (Greece, United Kingdom, Cyprus and Bulgaria) were trained in the course and then applied its materials and activities in their classrooms. For more information about the project see (Biza, Diakoumopoulou and Souyoul 2007) and the project website: www.math.uoa.gr/calgeo.

Parts of this project involve an activity designed for the introduction to the notion of derivative and some results of the application of this activity in a real classroom situation. For this introduction we use the tangent line as the limiting position of secant lines and as the linear approximation of the curve. Additionally, several cases of differentiable and non-differentiable functions are discussed through their geometrical and symbolic representations. In this application we employed a Dynamic Geometry software called EucliDraw with tools appropriate for Calculus instruction.

The implementation of the above activity in a Greek Year 12 classroom of 17 students raised issues – also known from the literature (e.g. Ferrara, Pratt and Robutti 2006) – such as: the student’s adaptation in the unfamiliar classroom environment (e.g. regarding collaboration, communication, familiarity with electronic environments etc.), the effect of different representations and the role of examples in addressing student misconceptions etc.

On the basis of the above observations – very helpful for the development of the material of our project – the need for further and systematic research on the diverse situations that these environments create in the classroom community emerged.

The project was partially funded by the EU (grant 11892-CP-1-2004-1-GR-COMENIUS-C21).

References
