How accurately does a simulation glove reflect function compared to rheumatoid arthritis sufferers?

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: HALL, T. C. ... et al., 2010. How accurately does a simulation glove reflect function compared to rheumatoid arthritis sufferers? Annals of the Royal College of Surgeons of England, 92 (7), pp. 605 - 609.

Additional Information:

- This article was published in the journal, Annals of The Royal College of Surgeons of England [© Royal College of Surgeons of England] and the definitive version is available at: http://dx.doi.org/10.1308/003588410X12699663904231

Metadata Record: https://dspace.lboro.ac.uk/2134/11834

Version: Accepted for publication

Publisher: © Royal College of Surgeons of England

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
How accurately does a simulation glove reflect function compared to rheumatoid arthritis sufferers?

Author and contributions:
T.C. Hall (SHO Orthopaedics) - data collection, analysis & manuscript preparation
M.F. Nixon (Lecturer Orthopaedics) - data analysis & manuscript preparation
J.J. Dias (Professor of Orthopaedics) - project design & manuscript preparation
T. Graham (Occupational Therapist) - Sollerman hand function testing
S. Cook (Loughborough University) – glove design and supplier

Department
Department of Orthopaedic Surgery, Glenfield Hospital, Groby Rd, Leicester LE3 9QP
Abstract

This study assessed the ability of gloves to simulate rheumatoid arthritis of the hand. Assessments were made in the dominant hand of 24 healthy volunteers with no glove, glove A (simulating stiffness only) and glove B (simulating stiffness and pain).

Results were compared to data held on 23 rheumatoid arthritis patients. Sollerman score was used as a standardised measure of hand function and time taken to complete testing was recorded. Grip strength was also measured in volunteers.

Both gloves simulate a reduction in power and prolong time taken to complete Sollerman hand function testing. The gloves are less able to simulate a matched reduction in function when compared to RA sufferers. Sollerman score is 9.7% less in RA hands than a healthy volunteer using the glove.

The glove could therefore be used to guide future design of tools and aides that accommodate for hand disorders. More work on the usefulness of such disease simulation in the design of tools for such patients is needed.
Summary

This study assessed the ability of gloves to simulate rheumatoid arthritis of the hand. Assessments were made in the dominant hand of 24 healthy volunteers with no glove, glove A (simulating stiffness only) and glove B (simulating stiffness and pain). Results were compared to data held on 23 rheumatoid arthritis patients. Sollerman score was used as a standardised measure of hand function and time taken to complete testing was recorded. Grip strength was also measured in volunteers.

Both gloves simulate a reduction in power and prolong time taken to complete Sollerman hand function testing. The gloves are less able to simulate a matched reduction in function when compared to RA sufferers. Sollerman score is 9.7% less in RA hands than a healthy volunteer using the glove.

The glove could therefore be used in the development and future design of tools and aides that accommodate for hand disorders.

Keywords

Rheumatoid arthritis, simulation, glove, Sollerman hand function

Word count: 1598
How accurately does a simulation glove reflect function compared to rheumatoid arthritis sufferers?

Introduction

Rheumatoid Arthritis (RA) is a chronic, progressive and disabling autoimmune disease with a prevalence of 1%\(^1\). It affects multiple joints in the body, but especially the small joints of the hand. Such inflammation causes degeneration of the joints which leads to pain and stiffness, particularly during use. The Department of Orthopaedic Surgery in Leicester together with Loughborough University Ergonomics and Safety Research Institute (ESRI) have designed and subsequently evaluated a glove designed to simulate impaired hand function, and thus replicate the effects of a rheumatoid patient’s joint stiffness. Such a glove with scientifically based impairment
similar to that in RA hands would be useful to manufacturers wishing to design products better suited for patients with RA.

ESRI was commissioned by Napp Pharmaceuticals Limited to develop a whole-body simulation of arthritis. The simulation included a pair of gloves designed to replicate aspects of impaired function (image 1,2). Glove A reduces palmar flexion. This is accomplished by incorporating thickened material into the palmer aspect of the glove at the level of the metacarpo-phalangeal (MCP) joint line of the digits. Glove B also reduced palmer flexion. In addition it is designed to imitate discomfort across the MCP and distal interphalangeal (DIP) joints of the digits and the CMC (carpometacarpal) joint of the thumb. This is achieved by the addition of roughened material within the glove to cause moderate discomfort over the volar aspects of joint lines. Both gloves appear identical exteriorly. It was postulated that this impairment of function, by way of stiffness and discomfort, could mimic the difficulties encountered by RA sufferers.

The objective of the study was therefore to assess scientifically how accurately the gloves simulate RA of the hand when compared to known patients suffering RA of the hands. We also wished to explore scientifically what aspects of reduced hand function are best matched to RA patients. There are currently no other gloves in production designed for such simulation and there are therefore no similar comparable studies.
Methods

The Nottingham Research Ethics Committee approved the project. The protocol was peer reviewed and funding for the project secured via the MRC IDBA (Inter Disciplinary Bridging Awards). Further to this the glove was tested for health and safety, being approved by the medical physics team at UHL (University Hospitals Leicester).

The project aimed to test how effectively the glove simulates RA of the hand by matching it against clinical data held on RA sufferers using the Sollerman hand function score as a standardised test of hand function\(^2\). The Sollerman test has been shown to be an accurate and reproducible method of measuring overall hand function\(^2,3,4\). Sollerman score assesses 20 activities of daily living using eight grip types (fig 1,2,3,4). Each subtest is scored on a five-point scale (0–4) (fig 3), with a maximum score of 80 points for the dominant hand. Of the 20 tasks, 17 are unilateral and three bilateral. As the upper time limit for each activity is 1 minute, the test can usually be completed within 20 minutes.

Based on a previous study\(^3\) (Limaye et al., 2001) we performed a power calculation which indicated that to see 15% change in Sollerman score, at least 14 patients were required in each group.
24 healthy adult volunteers were recruited, of which six were men and 18 women.
Their mean age was 37.7 years (SD +/- 12.7; range 21-60). Twenty-three were right
handed and 1 was ambidextrous. One volunteer, with recent trigger finger release,
was excluded from the study with a pre-existing hand disorder.

The volunteers took the Sollerman test of hand function. The test was administered by
the same occupational therapist for all subjects. We measured the time in seconds to
complete each individual task. The grip strength in Kg’s was assessed using a single
calibrated Jamar dynamometer. Results were obtained from volunteers wearing no
glove, glove A and glove B using their dominant hand. To prevent learning bias each
volunteer underwent hand function assessment in a random order, starting testing
either with or without a glove.

The data collected on the 23 known RA patients comprised Sollerman hand function
score and demographics. Unfortunately, grip strength and total time data was not
available as the dynamometer did not allow a record of weak hands. The mean age for
this group was 56.4 years (SD 9.7; range 42-74). There were 5 men and 18 women.
Of these 19 were right handed, 2 left handed and 2 ambidextrous.

We acknowledge that RA patients are significantly older than volunteers. We
addressed this by performing a separate analysis and found no statistical difference in
Sollerman hand function score (p 0.8) or total time taken (p 0.7) when data is
compared to volunteers over (n=16) and those below 45 years of age (n=8).
Initial comparisons were made amongst the volunteers with and without each glove to assess the degree of impairment caused. Subsequent analysis compared function of each glove with that of the RA sufferers, to assess the accuracy of simulation. Data was parametric and so paired and unpaired T-tests were used.

Results

1: Comparison of the glove with normal hands

The results show that normal hand grip strength was reduced when either glove was used, particularly glove B (mean reduction 41% to a mean of 19.3 kg, sd 7.3, p<0.005, table 1).

Both gloves also demonstrated a reduction in Sollerman hand function, and an increased time to complete the tasks. Again, this was most pronounced with glove B, in which there was an 8% reduction when compared to no glove (p<0.005). The total time required to complete the entire test was increased, with glove B, taking a mean 87% longer (p<0.005).
Certain functions were impaired more than others with the gloves, and this was illustrated by analysis of each Sollerman sub-test. The grip types most significantly reduced were the pulp-pinch, tripod-pinch and spherical volar grip. For example, task 4, which involved placing coins in a purse and reflects pulp pinch grip (see fig 1,2), took an mean 152% longer time to complete with glove B, with an average 36% reduction in Sollerman hand function (p<0.005) when compared to normal ungloved volunteers. The most significant reduction in function arose with task 9, which involved turning jar lids and reflects spherical volar grip. Sollerman score was reduced by mean 15% (p<0.005) in this subtest and time taken increased by mean 213% (p<0.005). Also highly significant was subtest 8, which involved turning nuts on a bolt and reflects pulp pinch, lateral pinch and tripod pinch grip. Here, Sollerman score was reduced by mean 33% (p<0.005) and time taken was increased by mean 150% (p<0.005).

2: Comparison of the glove with RA

RA patients had a mean Sollerman score of 82 (sd 15.6, p<0.05). These patients have the greatest reduction in functions using pulp pinch, tripod grip and spherical grip. This is illustrated by the fact that rheumatoid patients had the most difficulty in tasks 8, 9, 10 and 11 - combined these reflect tripod pinch and pulp pinch grip (table 2).

In comparison with glove B, rheumatoid patients had a lower mean Sollerman score (82 vs 92). Both had the greatest level of impairment with pulp pinch, tripod pinch
and spherical volar grip. The glove does not impair function to the same extent as in RA patients (table 2).

There was some variability in the way glove B reflected RA function. The data shows that the glove is good in reflecting tripod, diagonal volar and lateral pinch grip with little difference in mean score for these functions (table 2). Functions where the glove less accurately reflects RA patients include hand in pronation, transverse volar and spherical grip.

Discussion

The results demonstrate that hand function is reduced with both gloves. Time taken to complete the test is prolonged with both gloves compared to normal and grip strength is significantly reduced. However when the glove is compared to RA patients the reduced function is not a fully accurate match, especially with subtests involving pulp pinch grip. Sollerman score is 9.7% less in RA hands than a healthy volunteer using the glove.

The glove most effectively reduces subtests requiring fine touch such as picking up coins (task 4) and turning screws (task 8). It is unclear how much of this is contributed to by the reduced sensation caused by wearing the gloves. Perhaps future glove designs could leave the finger pulps free of material to reduce this sensory inhibition. The study did not account for sensory or proprioceptive disability encountered by patients suffering from RA. In one study by JH van Tuiji et al (2002)5
mean test score in the arms of patients lacking sensation was significantly lower than in those with normal tactile gnosis (p<0.001).

The glove also fails to simulate reduced movement at the elbow and wrist and this weakness could contribute to subsets of the Sollerman test becoming confounded. The aforementioned difference in age of the volunteers when compared to RA patients could also have been significant, however the glove has been produced to be used by designers, who would tend to be of an age under 50.

The glove does successfully and significantly reduce hand function when compared to a normal hand with no glove however more work on the usefulness of such disease simulation in the design of tools for such patients is needed. In its current form it is perhaps best suited to those tools requiring predominantly grips of lateral pinch, diagonal volar and tripod pinch. As described above it is in these that the glove best reflects RA of the hand.

Acknowledgements

ESRI would like to gratefully acknowledge the contribution of Karen Walmsley in the development of Gloves A and B.
References

Table 1: Sollerman Test results and Grip Strength

<table>
<thead>
<tr>
<th>Sollerman score</th>
<th>No glove</th>
<th>Glove A</th>
<th>Glove B</th>
<th>RA patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Score (SD)</td>
<td>99 (1)</td>
<td>93 (3)</td>
<td>92 (4)</td>
<td>82 (16)</td>
</tr>
<tr>
<td>Mean seconds (SD)</td>
<td>150 (41)</td>
<td>245 (70)</td>
<td>279 (72)</td>
<td>na</td>
</tr>
<tr>
<td>Mean Grip Strength, kg</td>
<td>32.8 (9.5)</td>
<td>20.1 (6.8)</td>
<td>19.3 (7.3)</td>
<td>na</td>
</tr>
</tbody>
</table>

Table 2: Sollerman grip type

<table>
<thead>
<tr>
<th>Grip type</th>
<th>No glove mean</th>
<th>Glove B mean</th>
<th>p*</th>
<th>RA mean</th>
<th>Difference***</th>
<th>p**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp pinch</td>
<td>3.9</td>
<td>3.4</td>
<td>Ns</td>
<td>3.2</td>
<td>0.3</td>
<td>Ns</td>
</tr>
<tr>
<td>Tripod pinch</td>
<td>3.7</td>
<td>3.1</td>
<td>Ns</td>
<td>2.9</td>
<td>0.2</td>
<td>Ns</td>
</tr>
<tr>
<td>Spherical volar grip</td>
<td>4.0</td>
<td>3.4</td>
<td><0.05</td>
<td>2.8</td>
<td>0.6</td>
<td>Ns</td>
</tr>
<tr>
<td>Diagonal volar grip</td>
<td>3.8</td>
<td>3.5</td>
<td>Ns</td>
<td>3.2</td>
<td>0.3</td>
<td>Ns</td>
</tr>
<tr>
<td>Lateral pinch</td>
<td>3.9</td>
<td>3.6</td>
<td>Ns</td>
<td>3.3</td>
<td>0.3</td>
<td>Ns</td>
</tr>
<tr>
<td>Five finger pinch</td>
<td>4.0</td>
<td>3.9</td>
<td>Ns</td>
<td>3.5</td>
<td>0.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Transverse volar grip</td>
<td>4.0</td>
<td>4.0</td>
<td>Ns</td>
<td>3.5</td>
<td>0.5</td>
<td><0.05</td>
</tr>
<tr>
<td>Hand in pronation</td>
<td>4.0</td>
<td>4.0</td>
<td>Ns</td>
<td>3.4</td>
<td>0.6</td>
<td><0.05</td>
</tr>
</tbody>
</table>

All data items were analysed using a t test. Only statistically significant p values are given.

p* refers to no glove tested against glove B

p** refers to Glove B tested against RA patients data

*** difference in reduction compared to volunteers with glove B
Fig 1. The eight grip types

Pulp pinch Lateral pinch Tripod pinch Five-finger pinch

Diagonal volar grip Transverse volar grip Spherical volar grip Hand in pronation

The eight hand grip types assessed by the Sollerman hand function test

Fig 2. Grip types assessed by the Sollerman Hand Function

<table>
<thead>
<tr>
<th>Task</th>
<th>Grip tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Turn key</td>
<td>Pulp and lateral pinch</td>
</tr>
<tr>
<td>2 Pick up coins and put in purse</td>
<td>Pulp pinch</td>
</tr>
<tr>
<td>3 Open and close purse zip</td>
<td>Pulp and lateral pinch</td>
</tr>
<tr>
<td>4 Pick up coins from purse</td>
<td>Pulp pinch</td>
</tr>
<tr>
<td>5 Pick up wooden blocks</td>
<td>Five finger pinch</td>
</tr>
<tr>
<td>6 Lift iron from box</td>
<td>Transverse volar, hand pronated</td>
</tr>
<tr>
<td>7 Turn screw with screwdriver</td>
<td>Diagonal volar grip</td>
</tr>
<tr>
<td>8 Pick up nuts and put on bolts</td>
<td>Pulp, lateral and tripod pinch</td>
</tr>
<tr>
<td>9 Unscrew jar lids</td>
<td>Spherical volar grip</td>
</tr>
<tr>
<td>10 Do up buttons on clothing</td>
<td>Pulp and lateral pinch</td>
</tr>
<tr>
<td>11 Cut plasticine</td>
<td>Tripod and diagonal volar</td>
</tr>
<tr>
<td>12 Put tubi-grip stocking on the other hand</td>
<td>Lateral and five finger pinch</td>
</tr>
<tr>
<td>13 Write with a pen</td>
<td>Tripod pinch</td>
</tr>
<tr>
<td>14 Fold paper and put in envelope</td>
<td>Five finger and lateral pinch</td>
</tr>
<tr>
<td>15 Attach paper clips to envelope</td>
<td>Pulp and lateral pinch</td>
</tr>
<tr>
<td>16 Pick up telephone and put to ear</td>
<td>Diagonal volar grip</td>
</tr>
<tr>
<td>17 Turn handle</td>
<td>Transverse volar grip</td>
</tr>
<tr>
<td>18 Pour water into jug</td>
<td>Five finger pinch</td>
</tr>
<tr>
<td>19 Pour water from jug to cup</td>
<td>Transverse volar grip</td>
</tr>
<tr>
<td>20 Pour water from cup</td>
<td>Pulp and lateral pinch</td>
</tr>
</tbody>
</table>

The 20 ADL’s assessed via the Sollerman hand function tests and the grips used
Fig 3. Scoring

4 points No difficulty, within 20 seconds, correct grip
3 points Slight difficulty or 20-40 seconds or slight divergence from normal grip
2 points Completed but with great difficulty or 40-60 seconds or not correct grip
1 points Partially performed within 60 seconds
0 points Task cannot be performed at all

Methods of score allocation to the Sollerman hand function test. Applies to all tasks.

Fig 4. Grip types tested by task

<table>
<thead>
<tr>
<th>Grip type</th>
<th>Task numbers assessing that grip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp pinch</td>
<td>1, 3, 4, 8, 10, 15, 20</td>
</tr>
<tr>
<td>Tripod pinch</td>
<td>8, 11, 13</td>
</tr>
<tr>
<td>Spherical volar grip</td>
<td>9</td>
</tr>
<tr>
<td>Diagonal volar grip</td>
<td>7, 11, 16</td>
</tr>
<tr>
<td>Lateral pinch</td>
<td>2, 3, 8, 10, 12, 14, 15</td>
</tr>
<tr>
<td>Five finger pinch</td>
<td>5, 12, 14, 18</td>
</tr>
<tr>
<td>Transverse volar grip</td>
<td>6, 17, 19</td>
</tr>
<tr>
<td>Hand in pronation</td>
<td>6</td>
</tr>
</tbody>
</table>

Image 1

Glove A: illustrating the thickened material across the MCP joints
Image 2

Glove A undergoing Sollerman hand function testing