Colossal magneto-optical conductivity in doped manganites

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a pre-print. It is also available at: http://arxiv.org/abs/cond-mat/9903217.

Metadata Record: https://dspace.lboro.ac.uk/2134/1203

Please cite the published version.
As we have recently shown [3–5], the interplay of the electron-phonon and exchange interactions results in a current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change in the optical conductivity at an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magneto- resistivity (CMR) itself, the corresponding magneto-optical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.

71.30.+h, 71.38.+i, 72.20.Jv, 78.20.Bh

We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change in the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magneto-optical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.

We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change in the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magneto-optical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.
The intraband optical conductivity is determined now by both the polaronic and bipolaronic contributions, which explains the sudden spectral weight transfer from \(\nu = \nu_h \) to \(\nu = \nu_p \) observed below \(T_c \) in the ferromagnetic manganites \([12,14]\). The experimental spectral shape in La\(_{2-x}\)Sr\(_x\)Mn\(_2\)O\(_7\) at \(T = 10K \) is well described with \(n = x/5, \nu_p = 0.5 \) eV and \(\gamma_p = 0.3 \) eV \([15]\).

The presence of a magnetic field changes the balance between polarons and bipolarons, resulting in a change of the optical conductivity. To quantify this magnetooptical effect we introduce the relative magnetooptical effect as

\[
\delta \sigma/\sigma = [\sigma(\nu, H) - \sigma(\nu, 0)]/\sigma(\nu, 0).
\]

(3) Carriers in manganites are heavy. Hence, we do not expect any orbital effect of the magnetic field on the mobility. Only the carrier density is sensitive to the field in our theory. As a result we obtain

\[
\delta \sigma/\sigma = \frac{e [n(T, H) - n(T, 0)] [\mu_p(\nu) - \mu_b(\nu)]}{\sigma(\nu, 0)}.
\]

(4) All major features of the magnetooptical conductivity can be understood with this expression. First of all the magnetooptical effect is maximal in the region of maximum variation of the polaron density \(n \) with the external magnetic field. It follows from our equations (see below) that the effect is maximal close to \(T_c \). The polaron mobility is larger than the bipolaron mobility at low frequencies and smaller at high frequencies, Eq.(1). At the same time one expects an increase of the polaron density with the magnetic field. Hence the magnetooptical effect should be positive in the low frequency region and negative at high frequencies. To calculate the effect we use the Hartree-Fock equations \([11,13]\) accounting also for the external magnetic field as

\[
n = \frac{t}{2w} \ln \left[1 + \frac{1}{1 + 2y \cosh(\frac{\pi h}{t}) + y^2} \right], \]

(5) \[
m = \frac{t}{2w} \ln \left[1 + \frac{1}{1 + 2y \cosh(\frac{\pi h}{t}) + y^2 \exp(-2w/t)} \right],
\]

(6) \[
\sigma = B_2(4h + m)/(2t),
\]

(7) where

\[
y = (-\delta/t)^{1/2} \left[\frac{\sinh[(x-n)d/(2xt)]}{\sinh[(x+n)d/(2xt)]} \right]^{1/2}.
\]

(8) Here \(B_2(z) = [1 + 1/(2S)] \coth[(S + 1/2)z] - [1/(2S)] \coth(z/2) \) is the Brillouin function, \(m \) and \(\sigma \) are the relative magnetization of polarons and of Mn, respectively. The reduced temperature is \(t = 2k_BT/(J_{pd}S) \), the dimensionless binding energy \(\delta = \Delta/(J_{pd}S) \), and the dimensionless magnetic field is \(2\mu_BH/J_{pd}S \). These equations account for a finite polaron, \(w = W/J_{pd}S \) and bipolaron, \(d = D/J_{pd}S \), widths of the energy level distribution, essential at low temperatures. We also assume here that immobile bipolarons are localized by the impurities and there is no more than one bipolaron in a single localized state (‘single well-single particle’ approximation \([23]\)). Therefore, the total number of states in the bipolaron (impurity) band is \(x \).

The effect of magnetic field on optical conductivity is maximal near the transition temperature, where the system exhibits a massive spectral weight transfer between polaronic to bipolaronic peaks in optical conductivity. At low temperatures, \(T < T_c \), when the system is almost polarized, \(\sigma \approx 1 \), the polaron density \(\sigma \) depends on the field in the combination \(1 + \frac{h}{t} \tanh(x) \). Since \(h/t \ll 1 \), the absolute change of the polaron density with the field in this region is always small. The same is true of the temperature range in the paramagnetic region far from the transition point. However, close to \(T_c \) the effect is very large as follows from the main equations (4)-(8). Assuming a large carrier density collapse, \(n_c/x \ll 1 \) we readily obtain from Eq. (9) (with \(\sigma = 0 \)) the density of polarons at the critical temperature as

\[
n_c(h) = \frac{t_c(h)}{w} \exp[-\delta/tc(h)] + O \left(\frac{(h/t_c)^2}{x} \right).
\]

(9) Here we assume that \(w \ll t_c \) (in the opposite limit, \(w \gg t_c \), the preexponential factor will be 2 instead of \(t_c/w \)). It formally looks as if we have only a second-order effect of the field. However, \(t_c = t_c(h) \) is very sensitive to the field \(\sigma \) and this leads to a strong field dependence of the polaron density, and, consequently, to a colossal magnetooptical effect.

To illustrate the point, we have calculated \(\delta \sigma/\sigma \) for \(\delta = 0.5 \) \((t_c = 0.162) \), with parameters \(\nu_{p,b} \) and \(\gamma_{p,b} \) given above, assuming that \(d \ll 1 \) (Figs. 1, 2). With these parameters the phase transition is discontinuous, and it is accompanied by approximately an eight-fold decrease of the polaron density \(n \) at the transition. Consequently, the low frequency (polaronic) peak at \(\nu_p = 0.5 \) eV sharply reduces in height, as the spectral weight is suddenly transferred to the bipolaronic peak at \(\nu_b = 1.24 \) eV, for temperatures varying between \(t = 0.15 \) and \(t = 0.175 \), through the critical temperature, Fig. 2. With further increase in temperature the density of polarons increases again since the bipolarons are subject to thermal dissociation. As a result, we observe some re-entrant increase of the spectral weight of the polaronic peak at lower frequencies at \(T > T_c \). It would be interesting to test this unusual temperature behavior of conductivity experimentally.

In a wide frequency interval we obtain a several-fold change in the magnetoopt conductivity calculated for \(h = 0.005 \) and temperature \(t = 0.175 \), which is somewhat higher than the critical temperature \(t_c = 0.162 \).

The positive sign of the relative optical magnetoopt conductivity at frequencies, where the dominant contribution comes from the polarons, immediately follows from our picture of current carrier density collapse. Indeed,
The Zeeman splitting of the polaron band pulls one of the spin subbands down in energy. A fraction of the bipolarons, proportional to the magnetic field, will then be destabilized and dissociate into polarons. This is accompanied by an increase in the polaronic contribution to the conductivity and the positive sign of the magnetooptical conductivity in doped magnetic charge-transfer insulators with a strong electron-phonon interaction. Its key feature is the pairing of carriers in the low frequency region. Below \(T_c \) the relative changes in the conductivity are most pronounced in the region \(\nu \geq 1.5 \text{ eV} \), where we have only tails of both polaron and bipolaron contributions. These changes are exaggerated because \(\sigma(\nu, 0) \) itself is small in this region. Above \(T_c \) the magnetooptical effect is mostly pronounced at low frequencies \(\nu \leq 1 \text{ eV} \) (Fig. 1). Our theoretical prediction of a colossal and positive relative magnetooptical conductivity near \(T_c \) is in agreement with recent measurements [16].

The spectral weight transfer is usually measured by the effective optical number of carriers

\[
N_{\text{eff}}(\nu_c) = \frac{2m_0}{\pi e^2 N} \int_0^{\nu_c} d\nu \sigma(\nu),
\]

where \(m_0 \) is the bare electron mass, \(N \) is the number of, for instance, dopant atoms per unit volume, \(\nu_c \) is the cutoff energy, which spans a low-frequency region (e.g. \(\nu_c = 0.5 \text{ eV} \), \(0.8 \text{ eV} \)). According to the sum rule for conductivity, \(N_{\text{eff}}(\infty) \) equals the number of carriers in the system. By using a finite-frequency cutoff, one can estimate the integral weight transfer from a given interval of energies. Typical behavior of doped manganites is that \(N_{\text{eff}} \) for mid-IR gradually diminishes with elevated temperature in the ferromagnetic phase until the systems approaches a critical temperature, where the weight drops. With the mobilities, Eq. (1), calculated within a (non-conserving) saddle-point approximation one is unable to quantify the integral spectral weight transfer. However, its experimental behavior is in qualitative agreement with our notion of the current carrier density collapse as described above.

In conclusion, we have developed the theory of the magnetooptical conductivity in doped magnetic charge-transfer insulators with a strong electron-phonon interaction. We have found a colossal magnetooptical effect close to the critical temperature, positive at low frequencies and negative at high frequencies. The conductivity increase in the field is several-fold at low frequencies near the phase transition in accordance with that observed experimentally [10]. Our theory of doped manganites is largely independent of the symmetry of the relevant electron orbitals and of the type of electron-phonon interaction. Its key feature is the pairing of carriers in the paramagnetic phase due to the lattice distortion and their unpairing in the ferromagnetic phase due to the exchange pair-breaking interaction, the latter being reminiscent of the magnetic pair-breaking in superconductors with magnetic impurities. It would be interesting to check the predicted strong temperature dependence of the magne-
to conductivity experimentally on various CMR systems.

We would like to acknowledge useful discussions with D.N. Basov pertaining to peculiarities of optical properties of strongly correlated systems. We are grateful to G. Aeppli, A.R. Bishop, D.S. Dessau, M.F. Hundley, K.M. Krishnan, A.P. Ramirez, R.S. Williams, and Guo-meng Zhao for helpful discussions. ASA acknowledges support from the Quantum Structures Research Initiative and the External Research Program of Hewlett-Packard Laboratories (Palo Alto).

* Email asa21@cus.cam.ac.uk
† Email alexb@hpl.hp.com