Loughborough University
Browse
Thesis-2013-Black.pdf (15.24 MB)

High temperature supercapacitors

Download (15.24 MB)
thesis
posted on 2013-06-13, 09:10 authored by Victoria J. Black
The scientific objective of this research program was to determine the feasibility of manufacturing an ionic liquid-based supercapacitor that could operate at temperatures up to 220 °C. A secondary objective was to determine the compatibility of ionic liquids with other cell components (e.g. current collectors) at high temperature and, if required, consider means of mitigating any problems. The industrial motivation for the present work was to develop a supercapacitor capable of working in the harsh environment of deep offshore boreholes. If successful, this technology would allow down-hole telemetry under conditions of mechanical vibration and high temperature. The obstacles, however, were many. All supercapacitor components had to be stable against thermal decomposition up to T ≥ 220 °C. Volatile components had to be eliminated. If possible, the finished device should be able to withstand voltages greater than 4 V, in order to maximise the amount of stored energy. The internal resistance should be as low as possible. Side reactions, particularly faradaic reactions, should be eliminated or suppressed. All liquid components should be gelled to minimise leakage in the event of cell damage. Finally, any emergent problems should be identified. [Continues.]

Funding

Schlumberger Limited, Loughborough University.

History

School

  • Science

Department

  • Chemistry

Publisher

© Victoria Jane Black

Publication date

2013

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en