A new methodology for requirements elicitation

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: [https://dspace.lboro.ac.uk/2134/12637]

Publisher: © Al-Zaid

Please cite the published version.
This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.lboro.ac.uk/) under the following Creative Commons Licence conditions.

![Creative Commons Licences](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:
- to copy, distribute, display, and perform the work

Under the following conditions:

BY: Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Please note that fines are charged on ALL overdue items.
A New Methodology for Requirements Elicitation

By

Asad Saud Al-Zaid

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of doctor of philosophy of Loughborough University

June, 1999

Supervisor: Ray Dawson

Department of Computer Science

© Al-Zaid 1999
Dedication

To my Wife, Children and my Brother Mohammed
Acknowledgments

“In The Name of Allah, The Most Benevolent, The Most Merciful”

I wish to express my gratitude to my supervisor Mr. Ray Dawson, for his guidance and his continuous encouragement through out this research project. I am also very grateful to Dr. Ian Newman, my director of research, for his support and advise especially at the beginning of this research.

My sincere thanks also go to Dr. A. Blyth for his support and assistant in this research project.

I wish to express my gratitude to the Bank of Bahrain and Kuwait for allowing me to apply and test my new methodology on their work. I also would like to thank the members of the project group for their support and assistants through out the case study.

I also wish to extend my gratitude to the Public Authority of Applied Education for granted me the study and their financial support to complete this work.

Many thanks to fellow colleagues AbdulAziz Alkandari, AbdulAziz Al-Romi, Ahmad Al-Sharah and Ghanima Al-Othman for their moral support and kindness. I also would like to give a special thanks to Dr. Ismail Farhan for his constant support and encouragement throughout this work.

Finally, I would like to express my gratefulness to my mother, wife, and children for their prayers, love, courage, support and understanding during the long period of my absence.
Abstract

A survey of the literature has suggested that most of IT system failure in information system development is due to problems of identifying and meeting users' requirements. Conventional systems that support the waterfall approach try to focus on defining information processing requirements rather than looking at IT from a wider perspective. This approach complicates the relationship between the client who 'owns' the problem and the developer who seeks to solve it. Therefore it is common for systems to be created which do not satisfy the needs of their human operators even though they are technically sound. The main aim of the research is to develop a new methodology that can contribute to the effective determination of user requirement.

The new methodology has been constructed from unifying ORDIT (Organisational Requirement Definition for Information Technology) and ISAC (Information System Work and Analysis of Change) methodologies. Therefore it can solve a certain set of problems, some which are solved by ORDIT, some which are also solved by ISAC and some which neither of the two methodologies can solve. The activity model used in ISAC is insufficient for solving the organisational issues, therefore it is replaced with the responsibility model which is taken from ORDIT. The responsibility model is used in order to give a clearer understanding of the organisation's structure, aim, objectives and policies. The tables and tools, which are used in the change analysis stage of ISAC, will be used in the new methodology for the purpose of identifying the business problem, user objectives and change needs. These tools and models are used in order to elicit requirements for different problem owner in different levels of the organisation. The new methodology has been applied to a real case study in order to demonstrate and evaluate its performance and usefulness. This case study showed the new methodology to be useful and effective.
List of Contents

Dedication i
Declaration ii
Acknowledgments iii
Abstract iv
List of Contents v
List of Figures xiv
List of Tables xvi
List of Abbreviation xviii

Chapter 1 Introduction ... 1
 1.0 The Research Problem ... 1
 1.1 Research Aims and Objectives .. 1
 1.2 Research Hypothesis .. 2
 1.3 Research Justification ... 3
 1.4 Structure of the Thesis .. 4

Chapter 2 Background and Literature Survey 7
 2.0 Introduction .. 7
 2.1 Enterprise Modelling ... 7
 2.1.1 Development of Enterprise Modelling 8
 2.1.2 Uses of Enterprise Modelling 9
 2.1.3 Enterprise Modelling Objectives 11
 2.2 Software Engineering .. 12
 2.2.1 The Uncertainty of Requirements 14
 2.2.2 Conflicts ... 14
 2.2.3 Alternatives .. 15
 2.3 Organisational Requirement Engineering Techniques 15
 2.3.1 Classification of Requirements Engineering 15
3.1.4 Solution Options ... 52
3.2 Tools Used in ORDIT Methodology .. 53
 3.2.1 Responsibility Modelling .. 54
 3.2.2 Obligation Model ... 55
 3.2.3 Activity Model ... 55
 3.2.4 Conversation Model ... 56
 3.2.5 The ORDIT Enterprise modelling ... 56

3.3 The Concept of Role .. 60
3.4 The Concept of Structural and Contractual Role 61
3.5 The concept of agency .. 65
3.6 Concluding Remarks .. 65

Chapter 4 Applying the University Library Case Study to ORDIT 67
4.0 Introduction ... 67
4.1 The University Library Case Study ... 67
4.2 Applying the Library Case Study to ORDIT Methodology 70
 4.2.1 Scoping ... 70
 4.2.1.1 Decide on Perspectives to be Modelled 70
 4.2.1.2 Define System Boundaries for the Chosen Prospective, and
 Identify Responsibility Relationships within this Boundary 71
 4.2.2 Modelling Stage .. 73
 4.2.2.1 Define the top-level Responsibilities within the System Boundary 73
 4.2.2.2 Create Conversation Diagram .. 75
 4.2.2.3 Construct an Abstract Model Showing the Pool of Responsibilities and
 Obligations within the System as a Whole 76
 4.2.2.4 Abstract Agency Model .. 79
 4.2.3 Requirement Generation .. 81
 4.2.3.1 Produce a model of the existing system showing its structure ... 81
 4.2.3.2 Construct a Role Relationship Diagram of the Existing System .. 83
 4.2.4 Solution Capture ... 87
 4.2.4.1 Draw Role Relationships Diagram of the Proposed System 87
4.3 Strength of ORDIT Methodology

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

4.4 Weaknesses of ORDIT Methodology

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
</tr>
</tbody>
</table>

4.5 Concluding Remarks

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
</tr>
</tbody>
</table>

Chapter 5 ISAC Methodology

5.0 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
</tr>
</tbody>
</table>

5.1 ISAC Methodology

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
</tr>
</tbody>
</table>

5.2 Change Analysis

5.2.1 List of Problems

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
</tr>
</tbody>
</table>

5.2.2 Analyse the Problems

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
</tr>
</tbody>
</table>

5.2.3 Making Activity Model of the Current Business

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
</tr>
</tbody>
</table>

5.2.4 Analyse Goals

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
</tr>
</tbody>
</table>

5.2.5 Define Change Needs

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
</tr>
</tbody>
</table>

5.2.6 Generate Change Alternatives

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
</tr>
</tbody>
</table>

5.2.7 Make Activity Model of Desired Situations

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
</tr>
</tbody>
</table>

5.2.8 Evaluate Alternatives

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
</tr>
</tbody>
</table>

5.2.9 Choose an Alternative

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
</tr>
</tbody>
</table>

5.3 Activity Study

5.3.1 Decomposition into Information Subsystem

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
</tr>
</tbody>
</table>

5.3.2 Analysis of Information Subsystems

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
</tr>
</tbody>
</table>

5.3.3 Co-ordination of Information Subsystems

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

5.4 Information Analysis

5.4.1 Precedence and Component Analysis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

5.4.2 Process Analysis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
</tr>
</tbody>
</table>

5.4.3 Property Analysis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
</tr>
</tbody>
</table>

5.5 Data System Design (DSD)

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
</tr>
</tbody>
</table>

5.6 Equipment Adaptation

5.6.1 Equipment Study

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
</tr>
</tbody>
</table>

5.6.2 Adaptation of Computer-Based Routines

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
</tr>
</tbody>
</table>

5.7 Tools Used in ISAC Methodology

5.7.1 A-graph

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
</tr>
</tbody>
</table>

5.7.2 I-graph

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
</tr>
</tbody>
</table>
Chapter 6 Applying the University Library Case Study to ISAC

6.0 Introduction ... 107

6.1 Change Analysis .. 107
 6.1.1 List of Problems ... 107
 6.1.2 List of Problem Owners .. 108
 6.1.3 Analyses of Interest Group ... 109
 6.1.3.1 Property Table .. 112
 6.1.4 Description of Current Activities .. 113
 6.1.5 Description of Objectives .. 114
 6.1.6 Evaluation of Current Situation and Analysis of Needs for Changes 115
 6.1.7 Study of change Alternatives ... 116
 6.1.8 Make Activity Model of Desired Situations ... 117
 6.1.9 Evaluate Alternatives ... 118
 6.1.10 Choose an Alternative .. 120

6.2 Activity Studies .. 121

6.3 Information System .. 125

6.4 Weaknesses and Limitation of ISAC Methodology ... 130

6.5 Strength Of ISAC Methodology .. 132

6.6 Concluding Remarks ... 134

Chapter 7 A Critical Evaluation of ISAC and ORDIT Methodologies................. 164

7.0 Introduction ... 164

7.1 Rational for Choosing Factors for the New Methodology 164

7.2 The four Essential Factors for the New Methodology .. 167
 7.2.1 User Needs ... 167
 7.2.2 Organisational Needs .. 167
 7.2.3 Business Needs .. 167
 7.2.4 Socio-technical Needs ... 168
7.3 The Evaluation Criteria .. 168
 7.3.1 Stakeholders' Information .. 168
 7.3.2 Attitude to IT .. 169
 7.3.3 User job needs ... 170
 7.3.4 Current Work Pattern .. 171
 7.3.5 Infrastructure Support for IT ... 173
 7.3.6 Problem Identification ... 173
 7.3.7 Pre-implementation Impact Analysis .. 175
 7.3.8 Organizational Issues Analysis ... 175
 7.3.9 Business strategy and objectives ... 177
 7.3.10 IT Strategy ... 178
 7.3.11 Business Mission .. 178
 7.3.12 Conventional Technical Needs Analysis ... 179
 7.3.13 Socio-Technical Needs ... 179

7.4 Evaluation Criteria framework ... 180

7.5 ISAC Limitations and Strengths of the Four Factors .. 181

7.6 ORDIT Limitations and Strengths of the Four Factors ... 182

7.7 Why Use the Responsibility Model ... 183

7.8 Concluding Remarks ... 184

Chapter 8 The New Methodology .. 185

8.0 Introduction .. 185

8.1 The New Methodology .. 186

8.2 Change Analysis .. 187
 8.2.1 Identify the Project Plan ... 187
 8.2.1.1 Identify the business mission and problems with current systems through an initial meeting with sponsor .. 188
 8.2.1.2 Issue a list of problems identified .. 188
 8.2.1.3 List groups of people or agencies that are affected by the problems identified 189
 8.2.1.4 Develop a matrix of the problems to be solved VS problem owners 189
8.2.2 Make a quantitative study for each problem identified ... 190
8.2.2.1 Perform a cause-effect analysis for each problem .. 190
8.2.2.2 Conduct a session with problem owners to discuss and approve updated problems .. 192
8.2.2.3 Produce a matrix of the updated problems VS problem owners 192
8.2.2.4 Issue a matrix of problems quantified ... 193
8.2.3 Model the current system using the responsibility model .. 194
8.2.3.1 Identify the boundaries of the current system .. 194
8.2.3.2 Identify responsibilities, obligations and activities for each department involved ... 194
8.2.3.3 Model the current system using the responsibility .. 195
8.2.4 Identify new system goal (change needs) and requirements 195
8.2.4.1 Conduct a session with problem owners to discuss the new goals 195
8.2.4.2 List the new system goals .. 196
8.2.4.3 For each goal find out the problems that prevent it from being achieved 197
8.2.4.4 Cluster problems into groups of similar problems that are related to the same goals ... 197
8.2.4.5 Issue a matrix of problems against goals (Change needs) 197
8.2.5 Generate a list of change alternative .. 197
8.2.5.1 Meet with problem owners ... 197
8.2.5.2 Evaluate change needs according to problem owners point view 198
8.2.5.3 Issue a matrix of change alternatives ... 198
8.3 System Modelling ... 199
8.3.1 Choose the best alternative package for the organisation 199
8.3.1.1 Present alternative packages of related changes to be investigated 199
8.3.1.2 Evaluate each package solution .. 199
8.3.1.3 Select the best package .. 199
8.3.1.4 Pre-implementation impact analysis ... 200
8.3.2 Model the required system using the responsibility model 200
8.3.2.1 Decompose the responsibility model in the change analysis stage into obligations using the role model .. 200
8.3.2.2 Discuss the new assignment of responsibilities resulting from the proposed system .. 200
8.4 Socio-Technical Design ... 201
8.4.1 Define IT Infrastructure ... 201
9.1.4.1 Conduct a session with problem owners to discuss the new goals. 232
9.1.4.2 List the new system goals. 233
9.1.4.3 For each goal find out the problems that prevent it from being achieved. 234
9.1.4.4 Cluster problems into groups of similar problems that are related to the same goals. 234
9.1.4.5 Issue a matrix of problems against goals (Change needs). 234
9.1.5 Generate a List of Change Alternative. 235
9.1.5.1 Meet with problem owners. 235
9.1.5.2 Evaluate change needs according to the problem owners point of view. 235
9.1.5.3 Issue a matrix of change alternatives. 236
9.2 System Modelling. 237
9.2.1 Choose the Best Alternative Package for the Organisation. 237
9.2.1.1 Present alternative packages of related changes to be investigated. 237
9.2.1.2 Evaluate each package solution. 237
9.2.1.3 Select the best package for the organisation. 238
9.2.1.4 Pre-implementation impact analysis. 238
9.2.2 Model the Required System Using the Responsibility Model. 239
9.2.2.1 Decompose the responsibility model in the change analysis stage into obligations using the role model. 239
9.2.2.2 Discuss the new assignment of responsibilities resulting from the proposed system. 242
9.3 Socio-Technical Design. 243
9.4 Conclusion Remarks. 244

Chapter 10 Conclusions and Recommendations for Further Research. 249
10.0 Conclusions. 249
10.1 The Importance of A positive Attitude. 251
10.2 Cost-benefit of The New Methodology Used in BBK. 253
10.3 Requirement Elicitation Process. 254
10.4 Recommendations for Further Research. 255

References. 257

Appendix 1: Calculation of BBK Cost and Saving from One of the Benefits of the New Methodology.
Appendix 2: Quotes from the Consultant Company.

Appendix 3: Published Paper.
List of Figures

Figure 2.1: The ANSA framework ... 17
Figure 2.2: The axiological framework ... 19
Figure 2.3: The SSADM method ... 23
Figure 2.4: The SADT stages ... 25
Figure 2.5: SADT specification ... 26
Figure 2.6: A CORE diagram ... 28
Figure 2.7: SAMM activity diagram ... 36
Figure 3.1: The generic concept in an OROIT enterprise model............................. 57
Figure 3.2: The entities and the relationships between them in the three OROIT models... 59
Figure 3.3: Simple role-relation diagram ... 61
Figure 4.1: Structural and functional relationships .. 72
Figure 4.2: Top-level system responsibility diagram .. 74
Figure 4.3: A simple example of a conversation diagram 75
Figure 4.4: Infrastructure diagram showing the structural obligations held by each role in the University Library ... 81
Figure 4.5: The existing system of circulation desk .. 86
Figure 4.6: The future system of circulation desk ... 89
Figure 6.1: A-graph for a university library .. 114
Figure 6.2: A-graph L6 for circulation desk .. 117
Figure 6.3: A-graph L0 for university library ... 125
Figure 6.4: A-graph L6 for circulation desk .. 127
Figure 6.5: A-graph for borrowing and renewals (L61) ... 134
Figure 6.6: A-graph for borrowing activity (L611) ... 136
Figure 6.7: A-graph for Renewal activity (L612) .. 138
Figure 6.8: A-graph for reservation activity (L62) ... 140
Figure 6.9: A-graph for document return activity (L63) 142
Figure 6.10: I-graph for the borrow desk .. 149
Figure 6.11: C-graph for updated borrow list (B3A) 150
Figure 6.12: C-graph for the statistical report on borrowing (B5A) 151
Figure 6.13: I-graph for the renewal desk ... 152
Figure 6.14: C-graph for the renewal information (D6A) 153
Figure 6.15: I-graph for reservation information .. 154
Figure 6.16: C-graph for document reservation (DR4A) 155
Figure 6.17: C-graph for statistical report on reservations (DR6A) 156
Figure 6.18: C-graph for statistical report on reservations (DR6A) 157
Figure 6.19: I-graph for the return desk .. 158
Figure 6.20: C-graph for the statistical report on reserved documents (R7A) ... 159
Figure 7.1: External and internal agencies that have an effect on the Library system ... 169
Figure 7.2: Role relationship diagram ... 171
Figure 7.3: List of obligation and activities for the Circulation desk 173
Figure 7.4: Circulation Desk A-graph in the Library case study 175
Figure 7.5: Top Responsibility Model .. 177
Figure 8.1: The iterative process within the new methodology 186
Figure 8.2: Cause-effect graph of Professional Association 191
Figure 9.1: HRD Organisation Chart .. 208
Figure 9.2: Cause-effect graph of Human Resources 214
Figure 9.3: Top responsibility model of BBK system 219
Figure 9.4: The Existing system for the human resources division 229
Figure 9.5: The Future System for the Human Resources Division 240
List of Tables

Table 6.1: List of problems 108
Table 6.2: Initial matrix of problems against problem owners 109
Table 6.3: Matrix of final problems after updating 111
Table 6.4: Matrix of the problems against problem owners 112
Table 6.5: A quantification matrix of some identified problems 113
Table 6.6: Text pages to A-Graph L0 115
Table 6.7: Text page to A-graph L6 118
Table 6.8: Problem owners' objective 122
Table 6.9: Table of change needs 123
Table 6.10: Table of change alternatives 124
Table 6.11: Text page to A-graph L0 126
Table 6.12: Text page to A-graph L6 128
Table 6.13: Table of alternative evaluation 130
Table 6.14: Information Analysis Planing 133
Table 6.15: Text page for A-graph L6L1 135
Table 6.16: Text page to A-graph L6L11 137
Table 6.157: Text page to A-graph L6L12 139
Table 6.168: Text page to A-graph L6L2 142
Table 6.179: Text pages to A-graph L6L3 143
Table 6.20: Table of ambition levels for some system attributes 144
Table 7.1: Initial matrix of problems against problem owners 168
Table 7.2: Table of change needs 178
Table 7.3: Evaluation Criteria Framework 180
Table 8.1: List of identified problems 188
Table 8.2: Problem against problem owners

Table 8.3: Example of List of updated problems

Table 8.4: Example of updated Problems against problem owners

Table 8.5: Example of quantified problems

Table 8.6: List of Problem owners Goals

Table 8.7: A matrix of change alternatives

Table 9.1: List of problems identified

Table 9.2: Problems against Problem Owners in the Bank of Bahrain and Kuwait

Table 9.3: List of updated problems for the Bank of Bahrain and Kuwait

Table 9.4: Problem against Problem Owners in the Bank of Bahrain and Kuwait

Table 9.5: A matrix of quantified problems

Table 9.6: List of goals

Table 9.7: A matrix of problems against goals

Table 9.8: A matrix of change alternatives

Table 9.9: Matrix of problems and problem owners for the automation package (A2+A3+A4+A5)

Table 9.10: identifies the factors and subfactors that can be solved by the new methodology
List of Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSA</td>
<td>Advance Network Systems Architecture.</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process re-engineering.</td>
</tr>
<tr>
<td>CIM</td>
<td>Computer Integrated Manufacturing.</td>
</tr>
<tr>
<td>CORE</td>
<td>Controlled Requirement Expression Methods.</td>
</tr>
<tr>
<td>CSCW</td>
<td>Computer-Support Cooperative Work.</td>
</tr>
<tr>
<td>EDDA</td>
<td>Is an extended formal language to SADT with a mathematical model transparent to users.</td>
</tr>
<tr>
<td>ETHICS</td>
<td>Effective Technological and Human Implementation of Computer-based System.</td>
</tr>
<tr>
<td>FOREST</td>
<td>Formal Requirement Specification Technique.</td>
</tr>
<tr>
<td>HDM</td>
<td>Hierarchical Development Methodology.</td>
</tr>
<tr>
<td>HSL</td>
<td>Hierarchy Specification Language.</td>
</tr>
<tr>
<td>ISAC</td>
<td>Information System Work and Analysis of Changes.</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation.</td>
</tr>
<tr>
<td>JSD</td>
<td>Jackson Structured Development.</td>
</tr>
<tr>
<td>LARCH</td>
<td>Is a formal language designed for the incremental construction of specification from other specifications languages.</td>
</tr>
<tr>
<td>MAL</td>
<td>Modal Action Logic</td>
</tr>
<tr>
<td>OBJ</td>
<td>It's a programming and Specification Language</td>
</tr>
<tr>
<td>ODP</td>
<td>Open Distributed Processing</td>
</tr>
<tr>
<td>ORDIT</td>
<td>Organisational Requirements Definition for Information Technology.</td>
</tr>
<tr>
<td>OSTA</td>
<td>Organisation System Task Analysis</td>
</tr>
<tr>
<td>PSL/PSA</td>
<td>Problem Specification Language/Problem Specification Analysis</td>
</tr>
<tr>
<td>RFAN</td>
<td>Role, Function and Action Nets</td>
</tr>
<tr>
<td>RML</td>
<td>Requirements Modelling Language</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>RD-ODP</td>
<td>Reference Model for Open Distributed Processing</td>
</tr>
<tr>
<td>SADT</td>
<td>Structured Analysis Design Technique</td>
</tr>
<tr>
<td>SAMM</td>
<td>Systematic Activity Modelling Method</td>
</tr>
<tr>
<td>SAMPO</td>
<td>Speech Act based office modelling approach</td>
</tr>
<tr>
<td>SCS</td>
<td>Structured Common Sense</td>
</tr>
<tr>
<td>SPECIAL</td>
<td>SPECification and Assertion Language</td>
</tr>
<tr>
<td>SSADM</td>
<td>Structured System Analysis and Design</td>
</tr>
<tr>
<td>SSM</td>
<td>Soft System Methodology</td>
</tr>
<tr>
<td>VDM</td>
<td>Vienna Development Method</td>
</tr>
<tr>
<td>Z</td>
<td>Is a formal language used for requirement specification</td>
</tr>
<tr>
<td>BBK</td>
<td>Bank of Bahrain and Kuwait</td>
</tr>
<tr>
<td>HRD</td>
<td>Human Resources Division</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.0 The Research Problem

There are many problems facing the system designers of information systems today. One of the serious problems occurring in the initial phase of design, is the elicitation of user requirements. There are different kinds of problem owners who engage in different kind of process within the context of an organisation. One of the reasons systems are badly designed and not fit for their intended purpose is that the people who have talked to the problem owners (stakeholders) have used the wrong language and have not communicated with them clearly. For example, in a hospital, the set of models a hospital administration uses is completely different from the set that is used by the consultants and again is completely different from the one used by the nurses. Thus, one of the important issues is that different requirements are expressed at different levels in different ways within an organisation.

1.1 Research Aims and Objectives

What is needed is not only to capture the conflict requirements within an organisation structure, but also to represent and elicit these different requirements at their appropriate levels. Requirements can then be used to discuss conflict resolution, compatibility and other issues.

Therefore, the first research aim is to design a new methodology that can use the same set of models and tools to talk, for example, to hospital administrators, consultants and nurses. We can build up a picture of what is going on and transfer it to the problem owners in their own language.

To assist the transfer process, early modelling is important; this is to help the feedback process and facilitate debate, which is the main purpose of Enterprise modelling. Therefore, models do not need to be models of reality (i.e. of the
systems as existing or proposed), nor is it necessary for the architectural specification to be in any sense correct in the first instance (Dobson, 1993). However, it is intended that the model must appear real to the client (stakeholders) (Newman, I. 1996 Private meeting). The objective of the new method is to get the problem owners (stakeholders) to develop models until they accept an ownership of these models and feel they can represent their requirements.

A second aim of this research is to draw a modelling methodology from social constructs (for example roles, responsibilities and obligations) rather than denotational concepts. The modelling language will be used to define a set of simple building blocks from which a set of models and prefabrications can be constructed. The defined prefabrication can be further elucidated by the problem owners during the negotiation phase. It will include a responsibility model which will be used to construct a set of models, templates and prefabrications from which the organisational requirements may be directly derived and reasoned about. The aim will also be to derive the responsibility model graphical notation directly from the technical and social domain applicability of the modelling language. The notation must have the ability to be used in a descriptive, prescriptive and normative manner.

The third aim of this research is that a complete methodology will be proposed but because of time constraints I will only concentrate on requirements elicitation, requirements analysis, and requirements specification which will be covered in the first two stages of the new methodology. As future work, stages three and four will need more construction, development, and then testing.

1.2 Research Hypothesis

There are different kinds of problem owners who need different kinds of models and engage in different kinds of processes within the context of the organisation. This makes the process of designing an IT system a very difficult task.
Chapter I

Introduction

Therefore the following assertions are made in this research:

1. That it is possible to develop a new methodology with a set of models and tools in order to elicit the problem in the problem owner's language to help them understand their current problems and help them find a solution to the existing system.

2. That it is possible to use these models and tools to build a picture of what is happening in the organisation and transfer it to the problem owners (stakeholders) in their own language at an early stage. This will help the feedback process and facilitate a debate with the problem owners.

3. The new proposed methodology can be constructed from combining the most valuable aspect of existing methodologies, which will enable it to solve a greater set of problems than could be solved by any of the individual methodologies from which the new methodology is derived.

4. That it will be possible to develop a methodology, which can solve the business problems as well as the socio-technical problems.

5. The result of the new methodology will be clarity and a greater insight into the nature of the problems enabling solutions to be developed.

1.3 Research Justification

This section presents briefly research justifications. These include the following:

1. This research methodology differs from existing methods in the sense that most of the existing methods concentrate on the technical values of the system and neglect its social values, while this research will pay attention to both the technical and the social values of the information system. In addition, it uses an axiological framework to develop a clear picture of the organisation aims, objectives and policies.
2. The proposed methodology will be built from combining the ORDIT and ISAC methodologies but it will be different from the ORDIT and ISAC methodologies in that it will solve more problems than either methodology on its own.

3. The new proposed methodology will also solve problems that neither ORDIT nor ISAC can solve on their own.

The validation of the research takes the form of two case studies with supportive analysis. Both case studies are drawn from the problems which real organisations are facing today.

1.4 Structure of the Thesis

Chapter one begins with a general problem definition statement of the problems concerned with requirements elicitation. It also explains the problem of why some of the systems today are not designed for their intended purpose. The aims and objectives of the research are presented in section 1.1. The research hypothesis and the way to prove them are presented in section 1.2, while the research justification and its originality is presented in section 1.3.

Chapter two presents a brief historical background about Enterprise modelling, explains why system analysts became interested in it and which industries are using it today. The problems of requirement engineering such as uncertainty, conflict and alternatives are discussed and explained. While in Section 2.3 a method of classification and evaluation is presented with which the requirement engineering notation, techniques and methodologies is graded. In section 2.4, an overview of various methodologies such as SSM (Checkland, 1986), ISAC (Lunddeberg, 1982), ORDIT (Dobson, 1993) are presented. Section 2.5 presents general discussions on the methodologies currently available to an information technology analyst/engineer today. Requirement specification languages and specification languages are presented in sections 2.6 and 2.7 respectfully. The chapter closes with the concluding remarks.
Chapter one

Chapter three introduces in detail the OROIT methodology and discusses the subprocesses of the methodology. The tools that are used in OROIT methodology such as the responsibility model, obligation model, activity model and conversation model are also explained. The enterprise modelling and its elements such as agency, activity and resources are explained in section 3.2.5. The final section explains the concept of role and agency and how these two concepts can help in the process of requirement determination and capturing.

Chapter four presents the university library case study applied to OROIT methodology. The reason for this chapter is to point out the strength and weaknesses of the methodology in order to develop the evaluation criteria. In this chapter, a small enterprise modelling diagram of the library organisation is constructed in order to show the contractual and functional relationships. The current system of the university library is constructed and analysed, using the responsibility model, to define the problem of the current system and suggest solution for the future library system. The future system is constructed using the responsibility model as well, which adopts all the required solutions. At the final section the OROIT methodology is analysed and the weaknesses and strengths of the methodology are presented.

Chapter five introduces in details the ISAC methodology and discusses its stages. The purpose of each stage and the relationship between them as well as the tools that are used within the methodology are explained.

Chapter six presents the library case study applied to ISAC methodology. The reason for this chapter is to point out the strength and weaknesses of the methodology in order to develop the evaluation criteria. The chapter begins with defining the problems of the library system, models the current system using the activity graph, A-graph. The tools and tables that are used at this stage are used for the process of requirement capturing and elicitation. The required system for the library system is constructed using the activity model as well. The final section presents the weaknesses and strengths of ISAC methodology.
Chapter seven introduces the main factors that must be included in the new methodology. These factors are Users needs, Organisation needs, Business needs and Socio-technical approach. Section 7.2, defines the importance of these factors and explains the reasons for using them in the new methodology. In section 7.3, ISAC and ORDIT methodology are evaluated against the four factors previously explained. Section 7.4, presents the evaluation criteria framework, which compares the ISAC and ORDIT methodologies and shows the weaknesses and strength of each methodology against the four factors. The final section explains the usefulness of using the responsibility model within the new methodology.

Chapter eight introduces the proposed new methodology and discusses its stages in detail. The purpose of each stage and the relationship between them as well as the tools that are used within the methodology are explained. Each step of the new methodology is explained with an example in order to illustrate its benefit and purpose.

Chapter nine presents the application of the new methodology in the Bank of Bahrain and Kuwait (BBK) case study. The reason for this chapter is to examine the use of the new methodology within the real world. The chapter closes with a comparison between the new methodology, ISAC and ORDIT in order to show that the new methodology can solve more problems than ISAC or ORDIT.

Chapter ten presents the main outcome of this research and provides recommendations for further research.
Chapter 2

Introduction

This chapter presents a background to the research area and provides a critical analysis of the literature survey. This includes literature on enterprise modelling, software engineering, organisational requirements, engineering techniques, requirements engineering methods, requirement specification languages and specification as a communication medium.

Enterprise Modelling

In the computer literature, there is evidence that due to the evolution of new technology, organisations are becoming more complex and distributed, and are being restructured many times during their lives. As a result, existing information systems have to be updated or changed to meet new organisational requirements. To meet those requirements, large distributed systems have to be designed which is a very complex task. Complex tasks have to be broken down into small parts in order to make the task more manageable and the problem easier to solve. Therefore, rather than dealing with the full complexity of the system, it is recommended that the system is considered from different viewpoints to reflect different sets of the design concerns. For any information system there are a number of roles that have an interest in it: such as the members of the enterprise who use the system, the system analyst, who specifies it, the system designers, who implement it, and the system administrators, who install it. Each role is interested in the same system, but their relative views of the system are different, they see different issues, they have different requirements, and they use different languages when describing the system.
Chapter 2 Background and Literature Survey

The ISO Reference Model for Open Distributed Processing (RM-ODP) has identified a framework using five different viewpoints or projections to look at complex distributed systems from different viewpoints. A set of concepts, structures, and rules is given for each of the viewpoints, providing a language for specifying the ODP system from that viewpoint. These viewpoints are: Enterprise, Information, Computational, Engineering, and Technology. These viewpoints are not independent, each one presents a partial view of the same system and produces a different model of the whole system. "Using the five ODP viewpoints to examine system issues encourages a clear separation of concerns, which in turn leads to a better understanding of the problems being addressed: describing the role of the enterprise (enterprise viewpoint) independently of the way in which that role is automated; describing the information content of the system (information viewpoint) independently of the way in which the information is stored or manipulated; describing the application programming environment (computational viewpoint) independently of the way in which that environment is supported; describing the components, mechanisms used to build systems (engineering viewpoint) independently of the machines on which they run; and describing the basic system hardware (technology viewpoint) independently of the role it plays in the enterprise". (Kazi et al. 1995).

2.1.1 Development of Enterprise Modelling

Enterprise modelling has attracted considerable interest in the last decade. Professionals in various disciplines feel the need to describe an enterprise according to prescribed rules before being able to contribute to improving business performance. This is true for accountants, operational researchers, quality auditors, and last but not least for those involved in the application of information technology (Wortmann, 1993).

Since the Second World War, operational researchers have been describing enterprises in terms of mathematical models of decision making situations. Organisational theory has modelled enterprises in terms of their structure, their functioning, their management, their view of employees, their role in society.
Chapter 2

Background and Literature Survey

(Pugh et al., 1964) and many other terms such as co-ordination mechanisms (Mintzberg, 1983). Quality auditors describe enterprises in terms of the procedures employed in order to guarantee a particular level of quality.

Information technology has given another impetus to enterprise modelling. In the early seventies, enterprises were modelled in terms of data flow and databases (Ross et al., 1977). The focus was on Management Information Systems, with an emphasis on decision making (Blumenthal, 1969). The main reason for this was that an information system was considered to be a model of an enterprise itself (Davis and Olson, 1984).

The need for enterprise modelling stems from the complexity and the restructuring of the organisation in order to compete with change. "The cost of living with obsolescence is much higher as it involves living with incompatible, standalone, non-standard, non-communicating, non-user friendly systems". (Aggarwal et al., 1993). Graef and Chan, (1993) stated that to solve these problems, we need a modularity and distribution for information systems. These reasons are adequate to justify the use of Enterprise Modelling either in a single organisation or between co-operative organisations.

2.1.2 Uses of Enterprise Modelling

(Bienert and Schonenberger, 1993) identified three areas of using the enterprise modelling. These are:

- Modelling for analysis purposes.
- Modelling for information system design.
- Modelling to perform enterprise operations.

The analysing model is usually a descriptive and explanatory model, which is static and provides accurate information about the existing system. It also defines the behaviour and the functionality of the system. The enterprise operations and information system models are considered as decision models. They are developed to control the system of the enterprise and to provide a framework to
support decision making objectives and constraints for the system in order to enable the user to interact with it. “Much modelling effort has been paid in the last decades to decision making activities and to modelling of processes to be controlled by decision making (Wortman, 1993).

Another use of Enterprise Modelling was presented by Rymond (1994), who discussed the use of Enterprise Modelling for organisational requirements and structure. He concluded that in Enterprise Modelling, social and organisational policies can be defined in terms of the following:

Agent - Active objects which initiate performative action that changes policy, such as creating an obligation or revoking permission.

Artefact - Passive objects, which do not initiate actions, e.g. a bank account.

Communities - grouping of agents and artefacts, e.g. a bank branch consists of a bank manager, some tellers, and some bank accounts.

Roles - role of agents, artefacts and communities, expressed in terms of policies.

- Permission - what can be done, e.g. money can be deposited in an open account.
- Prohibition - what must not be done, e.g. customers must not withdraw more than 500 pounds.
- Obligation - what must be done, e.g. the bank manager must advise customers when the interest rate changes.

In the late eighties and early nineties, a number of projects used the Enterprise Modelling techniques in designing their information systems. Within Europe, the CIMOSA (Computer Integrated Manufacturing - Open System Architecture) project attracted much interest. The reason for this revival of enterprise modelling is two-fold. One reason lies in the concept of Computer Integrated Manufacturing, CIM. This concept states that Information Technology pervades all functions of a business, rather than being restricted just to management support. The other reason lies in improved modelling formalisms. It is possible nowadays to give a much better formal specification of information systems than it was two decades ago.
Chapter 2

Background and Literature Survey

The Institute for Advance Manufacture Technology, National Research Council of Canada (Graefe, Chan, 1993) also carried out a project using Enterprise Modelling. This project was concerned with the manufacturing enterprise and how manufacturers can adapt to new product ideas and design products to respond quickly to market demands. The key needs to enable a manufacturing enterprise to fulfil the enterprise requirement are data, information communication and integration, which should be supported by a well designed information architecture.

Another area of application is the Support for enterprise modelling in CSCW (Hennessy et al., 1994), which developed an object-oriented conceptual framework for the modelling of enterprise information that is accessible in a generic manner by a wide range of groupware applications. This is to make the framework fully integrated and supportive for co-operative work.

2.1.3 Enterprise Modelling Objectives

The main objective of Enterprise Modelling is to provide a comprehensive set of tools for the creation of structural and process models of the business as well as production operations within an enterprise, with capabilities specifically aimed at continuous process improvement and evaluation of decision making alternatives (Graefe and Chan, 1993). To achieve this objective, some basic technical requirements must be met by Enterprise Modelling methods. These can be summarised as (Bienert and Schonenberger, 1993):

- Integrated, structured design methodology.

- Ability to manage complexity, to check completeness, consistency and coherency.

- Properties to allow functional decomposition process behaviour description, definition of organisational entities and aid decision-making activities.
• Possibility to cover the data oriented, process oriented and the behaviour oriented perspectives of the enterprise.

• Consideration of all relevant enterprise aspects, i.e. static, dynamic, organisational.

• Coverage of the whole system life cycle, i.e. evolution of the enterprise.

• Simulation of the model.

• Provision for an executable implementation model.

• Isolation of requirements definition and current implementation.

• Reusability and maintenance.

The traditional approach to information systems development has proved to be unsatisfactory, lacking facilities for dealing with highly complex, multidimensional, and distributed systems (South West Thames Regional Health Authority, 1993; Wiener, 1993; Fox, 1995). In the traditional paradigm, little attempt is made to understand the social nature of the enterprise and how the proposed system affects the work roles and the distribution of responsibilities between human agents and automated systems inside the organisation.

In this research, a modelling approach that could solve these problems is used by ORDIT. The approach advocates the analysis and modelling of the enterprise components prior to engaging in information system analysis and specification activities.

2.2 Software Engineering

Software Engineering is a systematic approach to the development, operation and maintenance of software. One of the major problems of software development is that the produced software does not fulfil the user needs, even though it is technically sound. The problem is often found in the initial specification of the
system characteristics (functional, quality, performance, etc.) known as the system requirements. **Requirements Engineering** was established as a subfield of Software Engineering with the task of developing models, techniques and tools that address the area of acquisition and specification of the system requirements.

Requirements Engineering deals with activities which attempt to understand the needs of the users of the software system to be developed and to translate such needs into precise, unambiguous statements which will subsequently be used in the development of the system. Requirements Engineering process can be seen as the integration of three interacting processes namely: requirements elicitation, requirements specification and requirements validation. The purpose of requirement elicitation is to gain knowledge relevant to the problem, which can be used for a formal specification of the software that is needed to solve the problem. The requirement specification process derives formal software requirement models to be used in subsequent stages of development. Finally, requirement validation certifies that the requirement model is consistent with customers’ and users’ intents (needs).

One of the most difficult issues that Requirement Engineering has to deal with is the preliminary acquisition of relevant requirements. Three reasons that complicates this step, namely: uncertainty, conflicts and alternative are considered in the next sections.
2.2.1 The Uncertainty of Requirements

Requirement uncertainty exists due to organisational uncertainty. Organisations are dynamic entities, constantly having to change. Often, in a lengthy systems development process, the organisation’s intentions at the beginning are unlikely to be the same as at the time of delivery. Furthermore, in most cases the enterprise practices that the system under development is going to automate will probably not be the same after the introduction of the new system. Thus requirements elicitation becomes a task of envisioning the future as well as understanding the present.

Not all requirements can be identified at an initial stage. Requirements are discovered along the way as the system is being built and tested. Extensive use of the system gives rise to enhancement or upgrade requirements, as users get used to utilising the system and discover what they like about it, or what they wish could be done in a different way.

Requirement elicitation suggests that requirements are to be found among people (the users). This adds even more problems to the elicitation process simply because users often do not know their requirements or cannot articulate them; users may change their minds; users disagree as to what their joint requirements are; and individual users are not representative of all users. Furthermore, communication between users and system designers is complicated by the fact that they use different languages: “the language of the system designers is suited to technical systems whereas the users’ language is appropriate to the organisational context”. (Dobson, 1993).

2.2.2 Conflicts

Conflict is an inevitable part of both requirements elicitation and system design (Easterbook 1994). Two obvious sources of conflict in Requirements Engineering are conflicts between participants’ perceptions of the problem, and conflict between the many goals of design. Other sources of conflict include conflicts between suggested solution components, conflicts between stated constraints, conflicts between perceived needs, conflicts in resource usage, and discrepancies
between evaluation of priority. In practice, requirements are negotiated, not captured.

Conflicting and fluctuating requirements have many causes, from change in the organisation setting and business environment, to the fact that software will be used by different people with different goals and different needs. Failure to recognise conflict between the perspectives of participants will cause confusion throughout the life cycle. The requirements may be based on a single perspective at the cost of any alternative perspectives (e.g. efficiency versus staff satisfaction).

2.2.3 Alternatives

The design of a software system can be viewed as the execution of a problem solving task. Problems can be solved successfully in more than one way, thus giving rise to different system alternatives. Several automation options should be considered, in each case suggesting actions which would take place in it, agents controlling these actions, responsibilities assigned etc. System requirements emerge only when possible alternatives are explored.

The system developers should be able to foresee and evaluate these alternatives and select the most suitable among them (suitability criteria include estimated funds or resources required, final system quality, user satisfaction, and degree of goals achievement etc.). Business information systems fall into the category of problems where the space of possible designs is so large that a designer will strive to reach satisfactory rather than optimum designs. If the design meets the criteria established by the problem stakeholder then the process has reached some (temporary) stability. As the enterprise changes, so must the design process recommence to reach some other satisfactory solution (Loucopoulos, 1994).

2.3 Organisational Requirement Engineering Techniques

2.3.1 Classification of Requirements Engineering Techniques

In this section a set of classification and evaluation criteria will be used to identify the weaknesses and strengths of the current techniques that are being applied to organisational requirements for information system. Blyth (1995) presented two
Chapter 2

Background and Literature Survey

classification schemes that are appropriate to use, these schemes are the ANSA framework and the axiological framework. The ANSA framework for system development (see section 2.3.2) presents five autonomous viewpoints of an information system. Through these viewpoints it is possible to build a picture of how an organisational information system might be realised in an information technology system, and what impact that information system might have on the organisation. On the other hand, the axiological framework (see section 2.3.3) allows us to classify, examine and explore the social value system and its interaction, which an information system will be required to support. The reasons for choosing these two schemes are their relationship to the area of examination and the need to distinguish between the methodology proposed in this thesis and that described elsewhere. In addition, I believe that the current requirements engineering techniques for organisational information systems have failed to address the two areas that these two frameworks address.

In the following, a description of the classification schemes is presented.

2.3.1.1 ANSA

The work presented in (ANSA, 1990) defines five different ways of viewing a system (See Figure 2.1).

![Figure 2.1: The ANSA framework](image)

Each of these different ways of viewing a system can be seen as a projection onto a particular set of concerns. The five projections that are defined are enterprise, information, computation, engineering and technology projections (these projections are similar to the ISO RM-ODP viewpoints explained earlier in section 2.1), where a projection can be thought of as a particular way of viewing the problem or perspective on the problem. The description of the problem in each
Chapter 2 Background and Literature Survey

projection is self-contained and the difference between projections is not how much of the system they describe, but rather, what they emphasise, each projection reveals different facets of the system.

Each projection represents a particular viewpoint, with its own set of issues and concerns. It is important to examine all the projections of the system, and it is a mistake to believe that some projections are more fundamental than others. Each projection represents a particular viewpoint by defining an arena within which a set of questions and their solutions can be examined and explored. The projections allow a problem solver to explore various aspects of the problem, from the abstract issues of responsibility, information flow, manipulation and transformations to what kind of architectural platform the proposed system could use. By examining how various methods, techniques and notations allow us to express the concepts described in the five projections, a better understanding of how each methodology, technique and notation fits into the process of Requirements Engineering should be gained.

2.3.1.2 Axiological Framework

Dobson, (1988) defined the word axiology to mean the theory of values and, in particular, a study of the ways in which values provide a basis for judging and deciding on actions. The purpose of an axiological framework is to facilitate the problem solvers and problem owners in their exploration and comprehension of the problem and the solution. The axiological framework can be used to express and explore the values that the solution is required to encompass and encapsulate. Through the use of this axiological framework the social concepts are examined such as responsibilities, obligations and commitments, and examine how, when and where they are manipulated.
Chapter 2
Background and Literature Survey

Axiological

<table>
<thead>
<tr>
<th>Conceptual</th>
<th>Logical</th>
<th>Log. Ops</th>
<th>Log. Cons</th>
</tr>
</thead>
</table>

Figure 2.2: The axiological framework

This framework is divided into four sections, each of which has its own concepts, goals and axioms for reasoning and expression, see Figure 2.2. The first section puts a structure within which it is possible to cultivate an understanding of the nature and structure of the concepts to be embedded in the system. The second section provides a logical framework within which it is possible to explore the values that the system is required to encapsulate, along with a logic to reason about the values. The third section delivers a framework from within which it is possible to understand and explore the logical operators that are required to manipulate the values. The fourth and final section puts a framework within which it is possible to examine a) the logical constraints under which the values encapsulated in the system will be required to function, and b) the effects of the logical constraints on the system.

2.4 Review of Requirement Engineering Methods

Over the years, many requirements engineering methods, tools and techniques have been developed to address the problem of user and organisational requirements capture and definition for information technology. In section (2.5), a review of certain organisational requirements engineering methods is presented. These methods are chosen for the fact that: a) they are in use today, or b) they represent a certain domain of requirements engineering methods. Using the above schemes (see sections 2.3.2 and 2.3.3) it is possible to divide the present techniques into five main groups; the soft system methodology (SSM), the hard system analysis methods, object oriented analysis and design methods, the Scandinavian style of methods and the socio-technical systems.
2.5 The Soft Systems Thinking Method

2.5.1 Soft System Method (SSM)

Checkland (1986) developed a method for system design called the Soft Systems Method (SSM) approach. This method can be seen as a general problem solving approach appropriate to human activity systems. The essence of the approach is an appreciation that for most problems, there are a number of problem statements that may be appropriate, and that the appropriateness of different solutions is largely determined by the particular viewpoints of those people who have an interest in the problem. The soft systems approach provides a conceptual framework to aid in the understanding of how the proposed system will function, along with how the proposed system will be defined. For example, a social security benefits system could be viewed as a system for ensuring that the needy obtain the benefit they deserve, or alternatively it might be viewed as a system for the protection of the "public purse".

Soft system thinking differs most from other approaches based on so called "hard" systems thinking, in that it allows the problem solver to explore the fuzzy and ambiguous nature of a problem and provides a means to discuss change. Soft systems thinking can be seen as the general case for which hard systems thinking is a special case. In soft systems thinking conceptualisation becomes system design, if the problem is sufficiently well defined. Improving the conceptual model sharpens up into optimisation of a quantitative model, and implementing some variety of changes becomes implementing a designed system.

The viewpoint that one adopts can strongly influence the kind of system that would be thought appropriate, and where such multiple viewpoints coexist in an organisation, a good design will be one that finds a suitable compromise between alternative views. A key feature of Checkland’s methodology is the representation of such complex design environments in a suitably 'rich' way, i.e. rich pictures, so that conflicts of interest can be identified and resolved, or a compromise problem statement reached.
In addition, this method demands that a system oriented approach to design be taken, where design is viewed as the creation of a formal system which must have certain features in common with other systems. These features include having a purpose or mission, a measure of performance, a decision taking process, components as subsystems, a degree of connectivity, an environment, a boundary, resources, and some degree of continuity. Emphasis is placed on describing possible systems in logical terms i.e. with regards to 'what' should be achieved, rather than 'how' it should be achieved.

Checkland’s approach has led to considerable debate within systems analysis circles, and appears to be useful where there is a complex design problem. Whilst it is difficult to obtain a measure of its acceptance, it has been utilised in a number of major projects, although it has not replaced hard systems design methods in any standard methodology. It is, however, beginning to be more widely used within the U.K. software industry.

Checkland’s soft systems methods, in general, allow us to only partially identify, represent and validate issues associated with the enterprise and information component of the ANSA framework, through the construction and analysis of a set of rich pictures. This approach does not allow us to identify the computation, engineering or technology components of the ANSA framework. These rich pictures allow us partially to identify, represent and validate all the components from the axiological framework. SSM does not direct its users in a particular direction when modelling; rather, it is left up to the discretion of the user of the method.
2.5.2 The Structured System Analysis and Design Method (SSADM)

The Structured Systems Analysis and Design Method (SSADM) method (Ashworth, 1991; Ince & Andrews, 1991; Longworth, 1989; Nicholls, 1987) is a structured methodology in that it attempts to address four questions that continually arise in the process of systems development.

• What is the system to do?
• When should it be done?
• How should it be done?
• Where is the information to be recorded?

SSADM, whilst complementing other development activities, does not encompass them all. Each stage is broken down into a small set of steps, which define the inputs, outputs and tasks to be performed. The product of each step and the interface between each step is clearly defined in the SSADM documentation. Each step serves to define a clear set of methods that can be used to achieve the overall goal of that step. The stages in SSADM follow a clearly prescribed linear sequence and SSADM methodology forces a problem solver to follow this sequence. The methodology starts at stage one, which is Investigate Current System and finishes in stage six, Physical Design. Figure 2.5 illustrate the method, following the six stages that a problem solver would engage in. What is not shown in Figure 2.5 is that from any stage there is a set of feedback loops back to all of the stages that have gone before.
Chapter 2 Background and Literature Survey

The first stage in the SSADM is called "Investigate Current System". This serves to allow the problem solver to learn the terminology and function of the system user environment. It allows the problem solver to see how the current system works, and to examine the data flows that exist within the system and the informational concepts, which the new system will need to support. The second stage is called Specification of Required System. In this stage the problem solver constructs a specification of the new system. This is based on the information that was gathered in stage one and is done in consultation with the problem owners. The third stage, Selection of Technical Options, serves to generate a set of possible technical solutions to the problem. Each solution is carefully evaluated against each other. Stage four, Data Design, defines the logical data design of the system such that all the required data is included in the system. Stage five, Process Design, develops the definition of the system defined in stage two to a low level of detail so that an implementor can be given the necessary details to build
Chapter 2

Background and Literature Survey

the system. Finally in stage six, Physical Design, the complete data and process design are converted into a design that will run on the target machine.

SSADM also employs a set of techniques (Ashworth, 1991; Ince and Andrews, 1991) that can be used at various stages in the methodology life cycle model. The rules of the syntax and notation of each technique are supplemented with guidelines on how they should be applied in a particular step. The diagramming techniques that can be used within SSADM are Data Flow Diagrams (DeMarco, 1979), Logical Data Structuring, Entity Life Histories and Logical Dialogue Design. SSADM also has a set of non-diagrammatical techniques including Relational Data Analysis, Quality Assurance Reviewing and Project Estimation. The SSADM methodology as it stands is a soft system methodology, in that it recognises that for any problem there are a number of different design solutions that may be appropriate, and that the appropriateness of different solutions is largely determined by the particular viewpoints of those people who have an interest in the problem and its solution. The methodology demands that a system oriented approach to design are taken, where design is viewed as the creation of a formal system, which must have certain features in common with all other systems. Obviously, a key feature in this methodology is the ability to represent and detect conflicts of interest among the holders of various viewpoints.

SSADM methodology allows a problem solver to examine and explore the information and computation projections defined in the ANSA framework, as it views an organisation as a set of conduits through which information flows and is transformed. It does not provide any framework for the discussion or analysis of any of the axiological concepts, operators or constraints that a proposed system would be required to encapsulate.
2.6 The Hard System Methods

2.6.1 The Structured Analysis Design Technique (SADT) Method

The Structured Analysis Design Technique (SADT) (Ross and Schoman, 1977; Tse and Pong, 1991) was designed to aid a problem solver in the task of requirement elicitation and analysis. The method is designed to terminate with the production of a specification that can then be fed in as the starting point for other standard methods. The basic concept behind SADT is that of slow refinement using a set of tools expressly designed to facilitate the process of requirements engineering. The tools vary from process models designed to provide a framework from within which it is possible to capture, define and examine requirement models from within which it is possible to discuss conceptual issues. The SADT methodology is divided into three stages, as shown in Figure 2.3.

![Diagram showing the SADT stages (Figure 2.4)](image)

The context analysis stage serves to define the reasons why the system is to be created along with why certain technical, operational and economic feasibility are
the criteria, which form the boundary conditions for the system. The functional specification stage acts as the description of what the system is to be, in terms of functions, the functions themselves must only be presented in terms of their pre and post conditions. The design constraint stage serves to summarise the conditions by specifying how the required system is to be constructed and implemented. Thus, the SADT methodology starts at the requirement elicitation phase of the development cycle and finishes by producing a specification that could then feed into a system design phase.

SADT specification is made up of a hierarchy of diagrams. At each level of diagramming a network of nodes and arcs is formed, see Figure 2.4. The arcs connecting the nodes together are used to represent input, output, control and mechanism. A node is used to denote an activity of the system. In SADT a hierarchical specification can be built up in a top down fashion according to strict syntactical and semantic rules. Each node can also have a piece of text associated with it; this textual language can be natural or artificial in nature. SADT provides a good graphical framework from within which problems can be refined and solutions expressed. However, it suffers from the graphical notation that it uses, being too rich and thus too difficult to understand at a single glance.

![Figure 2.5: SADT specification.](image)
While it is true that SADT was designed more for hard systems thinking than soft systems thinking, it does draw upon some of the ideas present in soft systems thinking. SADT makes use of the idea of a view of the system, as a way of examining and solving contradictions that may lie within the proposed system. SADT also makes use of a graphical language to express and validate sections of the proposed system.

EDDA (Trattini & Kemer, 1980) is an attempt to improve SADT by adding a mathematical formalism, enabling the static and behavioural properties of a specification to be analysed. EDDA exists in two forms, a graphical form called G-EDDA and a textual form called S-EDDA. The formalism upon which EDDA is mounted is Petri nets, and extended Petri nets are a graphical form of EDDA, (GEDDA). For every SADT specification it is possible to produce corresponding G-EDDA and S-EDDA specifications.

RML, requirements modelling language (Greenspan, 1984) is a formalism based on set theory and first order predicate logic which has been used to try to improve SADT by providing a language more akin to Pascal and C thus allowing a system designer to express requirements. By providing a means by which it is possible to express requirements using such a language, the problem solvers are straying from the domain of abstract specification into the domain of abstract implementation, and thus problem solvers may find themselves specifying the implementation of the system rather than the system itself.

SADT only allows the capture, representation and validation of issues contained within the information and computation components of the ANSA framework. The reason for this is that SADT views the world as a set of communicating processes. SADT does not directly address any of the issues contained in the axiological framework. The identification, representation and validation of requirements from the axiological framework is left up to the user of the method.
2.6.2 The Controlled Requirement Expression (CORE) Method

The Controlled Requirement Expression (Alford, Ansart, Hommel, Lamport, Liskov, Mullery, et al., 1985; Mullery, 1979) method is founded upon the need to produce a requirement specification whose content captures four things.

- Viewpoints. (e.g. Life-Cycle, Environment, Reliability);
- Information Types. (e.g. Actions, Events Mechanisms, Media);
- Relationships. (e.g. Data Flows, Hierarchies, Temporal Order);
- Attributes. (e.g. Size, Accuracy, Frequency, Constraints).

CORE serves to define the steps that a problem solver would engage in in order to produce a requirements specification. For each step, CORE carefully defines the objectives and validation checks.

In CORE it is necessary to recognise several viewpoints that may exist e.g. life cycle, environment, and operation. For each viewpoint it is necessary to identify the set of information types that may exist e.g. actions, media, and events. Once the information types have been identified then the relationships that exist between them can be explored along with the attributes that a problem owner would wish to associate with the information types.

The CORE method uses diagrams (Mullery, 1979) to aid in the elicitation and specification of requirements. The diagrams are used to identify the overlapping hierarchical and dynamic relationships that can arise from the many viewpoints inherent in a complete specification of the known requirements. CORE diagrams are produced for both data and actions. They are represented using operational and single thread diagrams respectively. The same diagrammatic notation is used for both of these notations and is illustrated in Figure 2.6.
The single-thread diagrams represent a form of transaction model and time flows from left to right. The operational diagrams are a time oriented snapshot of the system. The diagrammatical and other notations, i.e. MAL (Modal Action Logic) (Cunningham, Finkelstein, Goldsack, Malbaum, and Potts, 1985), used in CORE can also be mapped onto PSUPSA (Teichroew and Hershey, 1977; Tse and Polig, 1991) and thus onto other more conventional development methods.

The first stage in which a problem solver would engage in CORE methodology is defining the system boundaries. This activity can by its nature be very problematic. Once this has been achieved, or a preliminary attempt made, then the problem owner would attempt to isolate a small number of top-level views of the system. The idea of multiple view holders of the system is one of the key assumptions underlying the methodology. CORE then proceeds by refining and classifying the viewpoints held by the view holders. At each stage in the refinement process, the problem solver would attempt to classify, clarify and decompose the information types, relationships, attributes and functions of the system. At each level of refinement, the viewpoints are examined for any contradictions and omissions. If any are found then they are presented back to the problem owners for clarification. Diagrammatical notation is also used to aid the problem solvers in their quest for the elusive requirements. The problem solver would continue with the refinement and confirmation of viewpoints using the various notations until a structured requirement specification is produced. By making use of techniques to handle conflict identification and resolution the CORE method attempts to guarantee convergence towards an unambiguous problem statement.

Figure 2.6: A CORE diagram
Chapter 2

Background and Literature Survey

The primary purpose of CORE is to aid the problem solver in the production of a requirement specification of the purpose of the system. Once this goal has been achieved CORE then provides the means for this specification to feed into other development methods that could be used to develop and deliver the final system.

CORE views the system from a computational perspective. As a result, it will only allow us to identify, represent and validate requirements from the information and computational components of the ANSA framework. CORE does not let us directly identify, represent and validate requirements from any of the components from the axiological framework.

2.6.3 Jackson Structured Development

Jackson Structured Development, JSD (Jackson, 1983; Cameron, 1986; Ince and Andrews, 1991) is a widely used method for the development of real-time data processing and simulation systems. The technical aspects of the development are divided into three phases.

- The Modelling
- The Network.
- The Implementation.

The modelling stage forces the problem solver to examine not only the set of informational concepts that the proposed system is to encapsulate, but also the set of entities over which encapsulation will occur. The problem solver also considers what the constraining rules on the concepts are, along with what attributes should be associated with each concept or the manipulation of each concept. The modelling stage is thus used to identify the processes and data that the data processing system is to support. The modelling stage produces a set of actions, entities, attributes and rules. These objects are identified at a very abstract level, refined and then used as input for the network phase. JSD views a system as a set of communicating processes, where each process holds its own local data and the processes communicate via message passing. The network phase refines the
ideas and objects presented in the modelling phase in order to produce a system specification that is then used as input for the implementation phase. In the implementation phase, two main issues are addressed how to run the processes that comprise the specification and how to store the data that they contain. Thus the implementation stage takes as its input a specification produced by the network stage and produces as its output the final data processing system.

JSD views systems as a set of communicating processes and does not take into consideration how the user's environment will be changed, nor does it support the idea of problem owners holding views of the problem and thus of the system. Thus the JSD methodology may be classified as a hard systems methodology.

The JSD methodology does not provide a means by which it is possible to examine the axiological concepts. It does, however, provide a means by which the problem solvers and problem owners may investigate the information and computation projections from the ANSA framework. This ability comes from JSD's skill to view the system as a set of communication processes through which information flows and is manipulated.

2.6.4 Hierarchical Development Methodology (HDM)

The HDM, Hierarchical Development Method (Silverberg, Robinson, and Levitt, 1979), is designed to aid the problem solver in the tasks of requirement elicitation, analysis and specification, and then to aid in the process of design, development and implementation of the proposed information system. HDM was designed in accordance with the classical software life cycle model (Boehm, 1976). For each stage in the software life cycle model, HDM defines a methodology module. Thus the HDM methodology allows a problem solver to plug in at each stage in the development process the particular module that is required.

The specification method should be able to define completely the external behaviour of the components that comprise the information system. The requirement that the specification be precise and unambiguous dictates the use of a
specification language. HDM is very much centred on the specification of the hard information system and thus is a hard systems methodology.

HDM defines an information system as a set of modules that communicate together via message passing. In order to capture and model this at the specification phase HDM has a specification language called SPECIAL, SPECIfication and Assertion Language. The primary purpose of this language is to allow the problem solver to specify the modules and the communication functions of each module. The specification model of the system at this level may be considered to be an object model of the information system. HDM uses HSL, Hierarchy Specification Language, to describe the structuring of modules into machines and machines into systems. HSL allows a problem solver to specify quite abstractly the functions that the system is to perform, and then slowly refine them into a more state transition based form.

HDM views the system from a computational perspective rather than a humanistic one. Consequently, it will only allow us to identify, represent and validate requirements from the information and computational components of the ANSA framework, as it views the system as a set of communicating processes through which information flows and is manipulated. HDM does not let us directly identify, represent and validate requirements from any of the components of the axiological framework, as it views the system as a purely computational object.

2.6.5 The Formal Requirements Specification Techniques (FOREST) Method

The FOREST (FOrmat REquirements Specification Techniques) project (Cunningham et al., 1985) developed a formal notation, MAL (Modal Action Logic) to allow a problem solver to express, explore and reason about requirements. It also developed a method called Structured Common Sense, (SCS), (Potts, et al., 1986). The purpose of this methodology is to aid the problem owner in the task of requirement elicitation and capture. It consists of a number of distinct steps, some of which are performed in parallel and some in series. Each step produces one or more formatted representations and an increment to an
evolving formal specification. The formatted representations include a variety of diagrams, tables and highly constrained natural language descriptions. Each step has two aspects: a work plan or strategy, which describes how to do the work involved in the step, and a set of heuristics or tactics, which are hints, tips and general guidance on what to do in particular situations. SCS makes use of other formal notations, i.e. Entity Relationship Diagrams (Chen, 1976), in order to capture requirements. In SCS the formal specification is built up incrementally during the steps rather than being written down as a final step. The final system specification is expressed in MAL. In SCS there are five distinct stages that a problem owner must engage in in order to achieve a final specification. These are:

- Agent Identification.
- Data Flow and Action Analysis.
- Entity Relationship Attribute Analysis.
- Permission and Obligation Analysis.
- Temporal Analysis.

The agent identification stage can be viewed as the drawing of system boundaries. These boundaries serve to define what lies within the scope of the system. The data flow and action analysis stage determines the links that can exist between the agents and the nature of the interactions that can exist between the agents. It also serves to identify the primary actions that agents may perform along with how these actions may influence each other. The entity relationship attribute analysis stage allows for the identification of the functions that may be performed by an agent, and provides a means by which it is possible to explore the pre and post conditions for the functions. The permission and obligation analysis stage determines the causal forces exerted between actions. The temporal analysis stage determines the relations between actions occupying temporal intervals.
Chapter 2 Background and Literature Survey

FOREST and SCS provide a conceptual framework from within which it is possible to explore and examine information and computation components of the ANSA framework only. This is a result of FOREST's ability to model and analyse data flows and actions. In addition, this method partially makes it possible to examine the axiological concepts and operators that the organisational information system is required to support as it is able to express and analyse permissions and obligations.

2.6.6 Role, Function and Action Nets Method

The Role/Function/Action-Net (RFAN) method was first presented by Oberquelle (1989), and view organisations as communication processes. This method forms part of a larger class of methods concerned with Business Process Re-Engineering BPR (Davenport, 1993). BPR methods are concerned with re-structuring and re-engineering organisations so as to increase their performance. This re-structuring and re-engineering often involves the development, or re-engineering, of the organisational information system.

RFAN is a visual framework for the elicitation, representation and validation of requirements. They achieve this goal by the modelling of an organisation at three conceptual levels: role, function and action.

The role level concentrates on the pragmatics of work. A meaningful task for a person is called a Role; the person who perform that task is called the Role Player. A role comprises the responsibility for the task and the rights and duties with respect to other roles and their role players. One person may play many roles, each role being called a subrole and every role contains at least one function.

On the function level the concentration is on the static organisation of work. A function conceptually comprises one sequential activity and its local resources. Actors perform all functions; an actor may be a person or a machine. A function may access objects and data located in positions. The totality of positions constitutes the organisational space. The local space of a function is called its depot. The space that functions have in common with other functions is called their interface. Functions interact with each other by the exchange of objects or
data. An object is considered to be a set of individuals with some attributes, and data are considered to be attributes stored in an object.

The action level concentrates on the dynamics of the work processes. The simplest unit of activity is called an elementary operation. Operations are actively executed by actors and can be used to modify objects or data. The relationship between the operators and the actor is called the control aspect.

The RFAN approach allows a system designer to explore the way and thus the consequences of the way in which people within an organisation interact, how they do their work and what objects and resources have to be present within the system for them. All this aids the system designer in the task of capturing the system requirements.

RFAN allows for the identification, representation and validation of the information and computation components of the ANSA framework. They allow for partial identification, representation and validation of the enterprise component of the ANSA framework. This ability stems from RFAN functional view of the system's behaviour. RFAN only partially allows for the identification, representation and validation of the first component of the axiological framework.

2.6.7 The Systematic Activity Modelling Method (SAMM)

The Systematic Activity Modelling Method, SAMM (Lamb, Leck, Peters, and Smith, 1978; Stephens and Tripp, 1978) was developed by the Boeing, Computer Services Company. The objective of SAMM was to model an information system using hierarchical decomposition and data flow. The resulting language is a combination of graphics and graph-theoretical notations. The SAMM specification technique is based upon the idea of specifying and decomposing the activities that people within an organisation engage in. A SAMM specification consists of a context tree, a set of activity diagrams and a condition chart.

The context tree is the hierarchical structure that is used to rank activities. It is used to organise the refinement of an activity into its subactivities. It is possible to map from a context tree to an activity diagram quite easily. The context tree
allows a system designer to engage in a top down design process, and thus aids the
designer in the task of refinement. An activity diagram consists of a description of
subactivities and a data table, as shown in Figure 2.7.

The activity diagram that is shown in Figure 2.7 depicts the activity (function) of
compiling a list of names and then extracting from that list the most common
surname and Christian name. The data table is made up of data descriptions with
indices and is shown on the left of the activity diagram. In the activity diagram a
subjectivity is referred to as an activity cell and is represented as a rectangular box.
The data flow is drawn as arrows going from one activity cell to another. Then,
having organised the tasks into a context tree, an activity diagram can be used to
capture the data flow that exists between the various activities. Once this goal has
been achieved the behavioural properties of each activity cell can be specified
using a condition chart.

The SAMM technique fails to capture the notion of views or projections of a
system by implying that the problem is fixed and that everyone shares the same
definition of what the problem is. SAMM allows the problem solvers to examine and explore the information component, and partially examine and explore the enterprise component, of the ANSA framework. This ability is a result of the context tree and activity diagrams that SAMM utilises. SAMM does not support the examination and analysis of any components of the axiological framework.

2.7 The Object Oriented Methods

2.7.1 Object Oriented Analysis (OOA) Method

Object Oriented Analysis (OOA) methodology (Coad and Yourdon, 1991) is considered as one of the major object-oriented approaches for system analysis, it consist of five major activities as listed below:

1- Finding class-&-objects: is about increasing the analyst’s understanding of the problem domain and, as a result, identifying relevant and stable classes and objects that will form the core of application. Coad and Yourdon describes this as the ‘system’s responsibilities’. The problem domain is the general area under consideration, and the system’s responsibilities are an abstract of those elements that are required for the system that is conceived. It is the system responsibilities, which are modelled. The analyst of the problem domain is neither particularly original nor examined in great detail by Coad and Yourdon. The relevant classes and their associated objects are filtered out from the problem domain.

2- Identifying structure: at this stage the classes and objects are organised into hierarchies that will enable the benefits of inheritance to be realised. This involves the identification of those aspects or objects that are common or generalised, and separating them from those that are specific.

3- Identify subject: This stage serves to reduce the complexity of the model produced so far by dividing or grouping it into more manageable and understandable subject areas. Guidelines are provided for the grouping of related classes together and it is a bottom-up process, which produces a top-down view.
4- Defining attributes: This stage serves to define the attributes of the class-&-object. This is very similar to the identification of attributes for entity models. All implementation considerations associated with attributes are deferred to design. Therefore the attributes should not be normalised nor performance considered, and specific identification keys are not defined.

5- Defining services: This final section defines the services of the class-&-object where a service means the operation or processes performed by the object in response to the receipt of a message. Also the services which are termed 'algorithmically-simple' are defined. Yourdon later changed this terminology and called these services as 'implicit' services. These are the ones that are likely to appear in some form for each class-&-object in the model, they are, release (delete) connect and access.

These activities not necessarily follows a sequential steps, it is possible to iterate around them in a variety of sequence.

The OOA methodology dose not include design and implementation phases, although the authors address design in some detail in other sources. However, the transition from analysis to design in OOA is not question changing, or introducing, new concepts. The transition is simply a matter of extending the detail of the object-oriented models and specifications, and adding components concerning human interactions, task management and management. The detailed design stage slowly becomes program language in order to utilise most easily the object-oriented concepts. Coad and Yourdon point out that the results of the OOA can be implemented in a non-object-oriented language, although it would be much more difficult.

Concerning the user participation approach, OOA prescribe a passive role for the users, with the traditional view of users as a source of information and reviewers of models developed. It only allows for the identification, representation validation of the informational and computational component and it pays no attention to any of the axiological framework components.
2.8 The Scandinavian Style Method

2.8.1 ISAC

The ISAC, Information Systems Work and Analysis of Changes, (Avison and Fitzgerald, 1988; Lunberg, 1982) method is a problem-oriented method and seeks to identify the fundamental causes of the problem. The approach taken by the ISAC methodology is designed to analyse problem owners' business problems and to solve aspects of them where appropriate. The ISAC approach to problem solving is to educate the problem owners by helping them to understand better the nature of their problems. The ISAC method is a stepwise methodology that starts with trying to understand the problems that are facing the problem owners. It then goes on to analyse the information structures that exist within the current system and finally ends with the system delivery stage. The key difference between ISAC and other methods is that it directly places in the problem owners' hands the task of problem identification and supplies the tools and techniques to achieve this. ISAC method allows for the identification, representation and validation on the information and computation components. In general, they do not excel at the identification, representation and validation of any of the components from the axiological framework.

ISAC will be explained with more details in chapters 5 and 6.

2.9 The Socio-Technical Methods

2.9.1 ETHICS

ETHICS (Effective Technical and Human Implementation of Computer-Based System) is a socio-technical system development method, developed by Enid Mumford of the Manchester Business School in the late 1970 and early 1980 (Mumford, E. 1975)

It is based on the participative approach to information system development where user participation is very crucial throughout the development life cycle. This is opposite to the conventional methodologies where the technical issues are the major concern of the methodology and user participation is almost ignored. The
ETHICS methodology adopts the socio-technical approach that for the system to be effective the technology must fit with social and organisational factors and the social and technical parts of the system must be given the same amount of concern. In particular, this means that an improved quality of working life, and enhanced job satisfaction for the users must be a major objective of the system design process.

In ETHICS the development of computer based system is seen as a change process and is, therefore, likely to involve conflicts of interest between all the participants or actors in that process. These conflicts are not simply between managers and worker but often between worker and worker and manager and manager. The successful implementation of new system, therefore, requires a process of negotiation between the affected and interested parties. These parties are probably the most knowledgeable about the current work place situation and the future requirements.

Enid Mumford distinguishes between structure, content, and process. Structure is the mechanism of participation, which can be consultative, representative or consensus. Consultative participation is the weakest form of participation where the participant might influence the decision-making process but does not bind it in any way. Representative participation is a structure where an elected representative of the interest group is involved in the decision making process. This form of participation is appropriate for the tactical or middle management type of decision making. This might occur at the system definition stage where the system outline and boundaries are discussed and fairly wide spectrums of interests are involved. The third form of participation is the consensus form (which is adapted in ETHICS) where all stakeholders are involved in the decision making process. It is most suitable at the detailed design stage where the decisions probably affect the day to day work practices of the people involved. It is difficult to involve everybody in everything, what usually happens is that a design group is formed to do the work and present alternatives to the whole constituency, which takes the final decisions.
In the process of participation, users must have as much information and possible as it is necessary to make informed decisions, or at least as much as anyone else. Training and education of users is therefore a very important aspect of this method.

The job satisfaction needs and the efficiency needs (workflow problems) are collected and diagnosed by means of questionnaires given to all people who work in the organisation unit. Decisions are made by involving all workers in the unit, who should all support the decisions. The decision about the change option should be verified with the appropriate management authorities.

ETHICS can best be viewed as a development method for organisation units, with equal emphasis on the job satisfaction aspect, the workflow aspect and the information aspect of unit. Work design and implementation involves designing and implementing a new or renovated information system, but there is no specific advice of the ETHICS about this. The methodology does not identify the business strategy in the organisation.

Ethics methodology allows for the identification, representation and validation of the enterprise projection and partially the information components and only partially allow for the identification, representation and validation of any component from the axiological framework.

2.9.2 ORDIT
ORDIT methodology (Dobson, 1993), which is derived from an ESPRIT II project, focuses on the need of the organisation as opposed to the individual, and it is concerned with defining the organisational requirements that arise from the social context of the system that is being developed. It takes a socio-technical approach (Mumford, 1979) in which the system is viewed as a whole by placing it within the broad operational environment, with considering the user as an important part of the system. ORDIT's philosophy is that consideration must be given equally to both human and technical issues when designing a system in the organisation.
Chapter 2

Background and Literature Survey

The concept of responsibility is used in ORDIT as being a means of solving the problem of identifying requirements. ORDIT suggest that organisations are viewed as a network of responsibilities that users hold, and which are seen as an effective source of user requirements. As users know their responsibilities within the organisation for their work they have a need to know things and a need to do things in order to fulfil their responsibilities. These responsibilities imply requirement for information, requirement for action and requirement for keeping historical records.

ORDIT uses an Enterprise modelling language to represent the structure of the organisation. The three essential elements of enterprise modelling are agency, activity (action) and resources. These three levels show the hierarchical levels of ORDIT. Through this language, the methodology is able to 1) identify the requirement owner and their position within an organisation; 2) identify the user community and their roles and responsibility within the organisation in order to demonstrate completeness of the requirement modelling process.

The responsibility model is divided into three hierarchical levels: responsibilities, obligations and activities. Responsibilities are on the highest level and are relationships between agents who have certain rights as well as their responsibilities. On the next level, obligations are discharged by agents’ roles by virtue of their responsibilities. On the lowest level, obligations are refined into activities, which is how obligations are carried out by agents using resources. It is claimed in (Dobson, 1993) that using the responsibility model is better than using the activity model for the purpose of generating requirements and making the social context more explicit.

ORDIT methodology is based on four concurrent subprocesses: scoping, modelling, requirements and options. These are viewed as a road map and can be visited in any order, more than once with no specific start or end point. Scoping identifies the organisational territory and the important stakeholders as well as boundaries to the proposed system. A requirement consists of an exploration of possible futures through interaction and iteration with stakeholders and involves a
two-way transfer. Firstly, the developer builds a set of responsibility-base models using information communicated from the stakeholders. Secondly, the developer transfers these models to the stakeholders for them to validate and explore different possibilities. The options subprocess considers different socio-technical system options emphasising the perspectives, on which they are based, such as efficiency, return on investment and customer satisfaction.

ORDIT only allows the capture, representation and validation of issues contained within the enterprise and information component of the ANSA framework. The use of enterprise modelling and responsibility modelling allows us to identify, represent and validate all the components from the axiological framework.

2.10 Discussion of the Five Groups of Methods in General

This discussion will cover some methods that have already been reviewed and, in addition, some which have not yet been reviewed. When viewing, analysing and understanding methods it is important to comprehend not only the political concepts embodied within each method, but also the political system within which the method is to be used. It is also important to understand the view that the method has of the world and the problem within that world that the methodology is trying to solve.

Hard systems analysis methods such as JSD (Jackson, 1983) view the computer system as a pure computational object. These methods were developed in or around the 1960s when computers were big boxes that lived in large rooms and were used mainly as number crunchers. They place emphasis on the information requirements of the system. These methods commonly focus on the flow of information through a given environment and the different entities that make up that environment. They view an information system as an input process connected to a computational process connected to an output process. The goal of these methods is to specify a) the required input; b) the transformations that may be performed upon that input; and c) the output produced by the transformations. Critics make the point that hard systems design methodologies are based on
pseudo objective models of systems and suffer from two faults. Firstly, the representations used by the analysts only contain what the analyst thinks is important, and, secondly, analysts tend to fill gaps in available information using their own intuitive judgement. Hard systems methodologies view the process of problem solving as being deterministic. They also view the process of problem solving as being a clear linear sequence, which defines how the problem and solution will evolve and ultimately be defined. These methods, on the whole, only concentrate on the information and computation components and they do not focus on any part of values, which provide a basis for judging and deciding on actions.

Object oriented analysis and design methods (Booch, 1991; Coad and Yourdon, 1991; Rumbaugh, Blaha, Premerlani, Eddy and Lorensen, 1991) have been applied to both business process re-engineering (Davenport, 1993) and analysis and design of organisational information systems. The methods, in general, view the system as a set of interacting objects, where the interaction is in the form of strongly typed parameters passing through service invocations. As a direct result, they only allow for the identification, representation and validation of the informational and computational component. These notations, on the whole, have been designed by computer scientists for computer scientists and consequently pay no attention to any of the axiological concepts or operators that an information system would be required to support.

The Scandinavian style of methods can be viewed as empowering the problem owners through education and the free exchange of information. This style of method has been slowly gaining in popularity and is now used in Europe and North America. This class of method allows for the identification, representation and validation on the information and computation components. In general, they do not excel at the identification, representation and validation of any of the components from the axiological framework.

Socio-technical systems theory stresses the loss to overall effectiveness of any endeavour, which concentrates unduly on technical considerations by excluding or
minimising the motives and skills of people who are required to interact with the technology. Human characteristics and needs must be considered in the specification if a system is to be effective from both the technical and human perspective. A number of methods have been developed around the theory that specifically address human issues in design, e.g. ETHICS (Avison and Fitzgerald, 1988), OSTA (Harke~ and Eason, 1985) and Pava's Socio-technical Design Methodology (Pava, 1983). Characteristically, such methods include specific techniques to assist in identifying the needs and requirements of different classes of users of IT systems, and provide ways of identifying the human implications of design ideas. These methods in general allow for the identification, representation and validation of the enterprise (and partially the information) components, although they only partially allow for the identification, representation and validation of any component from the axiological framework.

2.11 Requirement Specification Languages

Blyth (1995) presented a detailed review of Requirement Specification Languages. He concluded that most of the existing methods provide a specification that does not accurately reflect the needs and values of the system owners and system users.

Researchers in the area of software engineering have for a long time used formal methods as a means of specifying systems. The belief is that if the system is specified correctly using certain logics, then various theorems about the properties of the system can be tested. In addition, a validation function may be performed on the system to check that the developed system meets the specification. The problems that have confronted formal logic researchers have primarily been concerned with how a correct specification is constructed. Specification languages such as LARCH (Guttag, et al., 1990), Z (Spivey, 1989) and VDM (Lucas, 1987) all draw upon various logics to aid in the construction of a specification. By considering purely functional aspects of the system they fail to capture correctly the context and thereby the environment of the system. In
limiting their view of the world to a purely functional one, they miss all of the non-functional information that is so important in defining today's systems.

Moreover, none of the above, provide any type of methodological framework to aid in the process of specification construction. The problem facing many people using these notations is one of constructing and validating a specification that accurately reflects the needs and values of the system owners and system users.

Various diagrammatic notations have been developed to aid in the requirements engineering process. These range from informal notations like RFAN (Oberquelle, 1989) and SAMPO (Auramaki et al., 1988) that draw upon social concepts to aid in the construction of a specification, to the more formal notations like Petri-nets (Beslmuller, 1988) and Role Interaction Nets (Rein and Singh, 1992) that draw upon formal systems to assist in the construction of a specification. All of the above have failed to address the issue of cognition of usage. They all present complex diagrammatic notations that draw upon various formal notations, which are very difficult for an untrained and unskilled person to pick up and use.

2.12 Specification as a Communication Medium

The specification document has been used as a communication medium for designing systems in the organisation context. However, for simple systems it is used as a communication medium between the problem owner and the problem solver. For complex systems it is used as a communication medium for many people, such as users, customers, designers, and analyst. As was shown in Zachman (1987), the specification document will be interpreted in different ways, where the specification for each user will serve to define a different set of objectives and goals. As Dobson and McDermid, (1990) stated, each user of the specification will perform an interpretation function into their own domain of knowledge. For example a problem owner will make an interpretation into the problem domain. In contrast, a designer solver will make an interpretation into the solution domain. The task of the problem solver can be seen as providing a
bridge between these two domains. An architect uses an architecture to map from the problem domain to the solution domain. The architecture functions as a medium of the communication through which a) the architect and the problem owners can explore and define the problem space, and b) the architect and the problem solvers can explore and define the solution space.

It is important to know that the architecture itself does not belong to either of the two domains, so it is neutral to both the problem and the solution. The mapping from the problem to an architectural view of the problem is one of negotiation, as a common interpretation function of the architectural view of the problem has to be achieved. The decision is to decide how a given set of architectural views of the problem should be implemented. At the heart of both the negotiation and the decision processes, the architecture functions as a medium of communication (Zachman, 1987).

The notion of an architecture as a means of specifying, analysing and validating system has been presented in Zachman, (1987) and then further developed in Zachman and Sowa, (1992). Architecture consists of technical, social, organisational and political concepts in addition to the basic things like building blocks, prefabrications, and etc. So there is more to the use of architecture than a set of components, rules and guidelines used during the process of system specification. An architecture is used as a part of the process of negotiation about the system requirements (Alexander, 1979) and as a part of a decision process about the system that should be built.

To understand the problem of interpretation and negotiation Blyth (1995) defined specification as a set of architectural views of the system, where a view is defined as an instantiation of a person’s, or organisation’s, perspective or viewpoint on the problem or its situation. Rather than looking at the system from different views it is better to classify and structure them. As was mentioned in 2.3.1, ANSA (ANSA, 1990) defined a set of five classifications, each of which is referred to as a projection or viewpoint and defines only a part of interests or concerns. The purpose of viewpoints is to focus on the problem under study while ignoring
irrelevanties (Van Griethuysen, 1992). If we view a system as a complex object that exists in the real world, then a projection can be viewed as a torch that we shine on the object in order to elicit and instantiate a certain set of requirements (Blyth, 1995). Each projection encompasses a different set of concepts, characteristics and functions of the enterprise system and their description and realisation.

2.13 Justification for choosing ISAC and ORDIT Methodologies

It is the experience of the author and can be seen in published reports (e.g. London Ambulance Services) (LAS, 1993) that many new systems fail because the organisational changes that will result from the implementation of a new system are ignored. Furthermore systems will fail if these directly involved with its use are not consulted in the design of a new system.

It is concluded, therefore, that what is needed in a new development methodology is a system that takes into account the needs and views of the individual users from the organisation as a whole. Ideally, the users from all parts of the organisation concerned with the new system should directly participate in its design.

From the previous analysis of socio-technical methods it is realised that through its responsibility model ORDIT is the only methodology that addresses the organisational requirements and represents all the components of the axiological framework which gives values and meaning to the relationship between agents. Another strength of ORDIT methodology is its premise that requirements cannot be fully separated from their social context, as “it only becomes clear what the requirements really are when the system is successfully operating in its social and organisational context” (Dobson, et.al, 1994). However most of the information system development methods that adopt the socio-technical approach in their system design do not include the business strategy in their methodologies. Noble (1991) stated that “socio-technical design was originally developed for limited
Chapter 2

Background and Literature Survey

shop floor systems, and historically did not encompass questions of business strategy”.

ISAC is a methodology that has its strength in identifying the business strategy when developing an information system. It also advocates the user participation especially in the analysis and design phases.

The main difference between ISAC and other methodologies that have been discussed earlier is that it does not start modelling until all the business problems are identified and then analysed. What makes this process unique is that it directly places in the problem owners’ hand the task of problem identification and supplies the tools and techniques for it.

Therefore it is believed that combining ORDIT and ISAC can provide an effective methodology for the requirement elicitation process with a series of tools and methods that are easy to use and understand. These two methodologies are examined in more detail in the next chapters.

2.14 Concluding Remarks

Enterprise modelling has received considerable interest as a research area in the last decade. This interest is due to the need to model the business operation occurring within the organisation, including the resources and information flow, representing the organisational change and its relationships to the environment.

One of the important stages in software development life cycle is requirement engineering. The main problem facing system analysts today is how to specify the user requirement. Therefore, various requirement engineering techniques are available in the market today to help system analysts to solve the problems of requirement engineering namely, eliciting, capturing and validation.

The ANSA framework and the Axiological framework are used as classification schemes for identifying the weaknesses and strength of the current techniques that are being applied to organisational requirement for information system. Using
these schemes it was possible to divide the requirement engineering techniques into five groups. The Soft System Methodology (SSM) concentrate partially on the enterprise and information component of ANSA framework and partially focus on the axiological framework. The hard system analysis methods and the object oriented analysis and design methods concentrate only on the information and computation components and they do not focus on any part of values from the axiological framework. The Scandinavian style of methods (e.g. ISAC) concentrate only on the information and computation component and ignore the component of the axiological framework. The socio-technical systems (e.g. ETHICS) concentrate only on the enterprise and partially on the information components (except for ORDIT methodology). They only focus partially on the component of the axiological framework. An overview of various requirement specification languages has been presented in order to explain how they are inadequate for addressing the non-functional requirements that are important for defining the information system today.

At the end of the chapter the process of choosing ISAC and ORDIT for the new methodology is justified.
Chapter 3 The ORDIT Methodology

3.0 Introduction

ORDIT (Dobson et al, 1993) (Organisational Requirements Definition for Information Technology Systems) is a methodology that concentrates on handling the complexity of socio-technical systems. It views the people within the organisation and how they interact with the computer as part of the system. Its aim is to elicit the organisational requirements which come out of a system being placed in the social context rather than those requirements which are extracted from the functions to be performed or the task to be assisted. ORDIT uses aspects or models of the system like responsibility, obligation, and activity. These aspects (models) are related to each other within a conceptual framework, which gives the strength to ORDIT methodology. Dobson, (1993) stated that "through its enterprise modelling representation, ORDIT methodology holds the view that the function of the organisation is manifested in the responsibility held by agent entities, and the structure of the organisation is manifested in the responsibility relationship between them". Therefore the agent entities and the relationship between them (called the structural relationship) are considered as the skeleton of the socio-technical system, which are a very essential part of ORDIT methodology. The responsibility relationships between agents embody the organisational structure in terms of the authorisation power structure, in that they impose requirements in terms of information and communication structure on any IT system that is installed.

3.1 Component of the ORDIT Methodology

The ORDIT method consists mainly of four sub-processes, which are mutually supportive, namely: scope, system model, requirements capture and solution
capture. Unlike the conventional models, ORDIT is iterative, and it does not follow a predetermined order. These four sub-processes are as follows:

3.1.1 Scope

The first step of this process is to define the scope of the existing system that might be changed in the future and explore what the new requirements might be. It is important to find out whether such generated requirements fall within the scope of the existing system, or whether the scope has to be changed in order to contain them. Another process carried out at this stage is to determine the major players (i.e., the stakeholders) who have an interest in the future of the existing system. Thus the major tasks of scoping are

- To determine the nature of the contract with the client.
- To determine the boundaries of the system.
- To understand the purpose and structure of the organisational units that are going to be involved in the development process.
- To identify the major stakeholders involved.

3.1.2 System Models

The purpose of this subprocess is to represent the current understanding of the socio-technical system by producing a set of models. These models will provide information about the environment where the IT is functioning as well as providing a context for understanding later policy and design decisions. The information provided is used to help in the discussion of what sort of system the future system should be, and how responsibilities and authorities in the organisation are going to change as a result of introducing the new system. Steps performed at this stage are:

- Define a top-level responsibility model within the system boundary.
• Construct a more detailed abstract model consisting of responsibilities and a list of obligations associated with each responsibility.

• Construct an abstract model showing the pool of responsibilities and obligations within the system as a whole.

• Construct an abstract agency model.

3.1.3 Requirement Generation

The purpose of this subprocess is to generate user requirements rather than capturing them. One way to do this is to model the existing system and visualise the future, which serves to generate new requirements as possible new ways of working are explored. Organisational requirements which are non-functional requirements are elicited from problem owners in order to agree on what the system should be rather than how it is, and to identify problems in the current system and how these might be overcome.

It is important that this stage of the requirement process should be concerned with the determination of what organisational responsibilities need to be supported by the IT system rather than what functions the IT system is to perform. Therefore it is preferable to view the system as supporting contractual and work related obligation rather than taking a functional or activity-base view of a system at this stage. Dobson, et al, (1992) stated that "experience in a number of case studies has convinced us that taking a functional or activity-based view of a system at the stage of requirement generation leads to significantly lower quality (i.e. less 'fit-for-purpose') requirements than taking a view of a system as supporting contractual and work-related obligations.

3.1.4 Solution Options

This is the final step in the problem domain of requirement analysis. In this subprocess different design options are created for the socio-technical system, with conflict and trade-off being resolved with the client. The acceptability of the preferred option is agreed with the problem owners and other stakeholders in an
iterative fashion, ensuring that the option meets the formal model of requirements. The new changes might have an effect on the organisation and its organisational structure as well as changes in the technical system and new IT constructs.

An important point to mention here is that these four requirement processes are not in sequence order, the whole process being iterative with feedback to the client at every stage.

3.2 Tools Used in ORDIT Methodology

The ORDIT approach is to model responsibilities rather than activities and to model information from the contractual view rather than the current structure of the information flow. ORDIT has approached the problem of modelling complex socio-technical systems by developing three interrelated models: the responsibility model that describes the structure of the organisation, the obligation model based on the obligations that describe the role or job, and the activity model that describes functions of the role. The distinction between these three models and the relationship of activities to responsibilities through obligation is central to the ORDIT conceptual modelling framework.

3.2.1 Responsibility Modelling

A responsibility is a three way relationship between two agencies and a state of affairs. For this relationship it is said that agency A is responsible (in some way) to agency B for bringing about or maintaining a state of affairs. It is from this that the task definition is derived. Responsibility is defined in ORDIT methodology as a relationship between two agent entities regarding a specific state of affairs, such that the holder of the responsibility is responsible to the giver of the responsibilities (the responsibility principal). ORDIT adapts the consequential type of responsibility, therefore, when thinking of responsibilities it must always be considered as a relationship between two agents, it cannot be looked at on its own. Dobson, et al. (1994) stated that "Both in reality and in terms of the model, it is this relationship between the agencies that is important, and the question that we
should be asking takes the form of "To whom are you responsible and in what respect?"

A structural relationship serves as a means for the responsibilities and obligations to flow from one agency to another and thus responsibilities and obligations flow through an organisation.

A holder of a responsibility holds two types of obligation associated with the responsibility:

- Functional obligations which are relationships between an agent and an action.

- Structural obligations which are relationships between agents. This relationship comprises two categories,
 - The contractual type of relationship between organisations or between agents within an organisation. (Ex. Client-Server)
 - The co-worker type of relationship between agents within an organisation or departments. (Ex. Peer-Peer)

Using the responsibility level of modelling the analyst is looking at a very high level of abstraction where the agencies consist of major subdivisions of the organisation (see Figure 3.2). Modelling the organisation at this level it is best to consider the responsibilities that employees have to each other for a states of affairs and the right they have to any information that needs to be used. In this way it is possible to analyse the high level policy or the direction aspect of a particular organisation. At this level of representation the analyst is concerned with why an agent does something rather than how it is done.

Responsibilities cannot be transferred from one agent to another. What could be happening is that the responsibility is reallocated to a new holder by the responsibility principal by destroying the relationship with the previous holder and establishing a new holder. However, obligations can be transferred from one agent
to another provided that it is permitted by their relationship within the organisational structure.

Through the responsibility delegation process an agent (responsibility holder) can transfer his obligations to another agent in order to establish a new responsibility relationship between them. The first agent becomes the principal of the new responsibility relationship and the other is the new responsibility holder.

For example, delegation of responsibility gives the first agent (the primary agent) a new responsibility to monitor, supervise, control, and direct the new agent to ensure that responsibility is carried out. And the new agent acquires a new obligation to be directed and supervised. All of these are structural obligations.

3.2.2 Obligation Model

At this lower level of abstraction it is possible to identify roles within an organisation and the set of obligations that they have as a result of responsibilities (see Figure 3.2). To distinguish between responsibility and obligation, responsibility is for a state of affairs, whereas an obligation is to do (or not to do) something that will change or maintain that state of affairs. Obligations can be identified as duties that one must discharge as a result of holding responsibilities. Therefore at this level of representation the analyst is concerned with what needs to be done rather than how it is achieved.

3.2.3 Activity Model

This is the lowest level of abstraction where the emphasis is on the activities that need to be performed in order to discharge obligations. The distinction between obligations and activities is an important one of specification of detail. Activities are operations that can change the state of the system. The role holder may (or may not) have wide choices of activities that discharge the obligation he/she holds. Obligations might have many activities to be discharged. At this level of abstraction the agents involved can also be described in specific terms, for example the activities associated with a particular librarian rather than the role of 'librarian'. Likewise the resources aspect may also be described in specific rather
than abstract terms, for example computer book rather than document. Therefore this model is used to identify resources within the system boundaries and what activities are performed on them. At this level of abstraction the analyst is concerned with how things are done within the organisation.

3.2.4 Conversation Model

This model is not included in the conceptual model framework and it is only used when needed. Conversation analysis can be used in all of the above three models whether it is the responsibility model, obligation model or activity model.

Every relationship between one agent entity and another (structural relationship) implies a conversation and the need for some sort of communication link between them permitting the exchange of information. ORDIT defines conversation as a sequence of speech act (not necessarily spoken face to face) between two or more agents. The conversation may refer to activities, obligations or responsibilities held by the agent, or the conversations may be activities in their own right as for example conversation between the circulation desk and a member (see Figure 4.5 in chapter 4).

In ORDIT methodology the conversation model is considered as a valuable tool of the requirement capture process, since most conversations (excluding face-to-face) are mediated by some sort of resource whether paper or electronic, and therefore it is considered as an indicative process of requirements on the IT system.

3.2.5 The ORDIT Enterprise Modelling

The ORDIT project has devised a diagrammatic enterprise modelling language to represent the structure of the organisation (Dobson and McDermid, 1991). In addition, this modelling language serve two related but distinct purposes: (1) to identify the requirements owners and their positions and roles within the organisation so as to demonstrate completeness of the requirements elicitation process, and (2) to identify the user community and their roles and responsibilities within the organisation in order to demonstrate completeness of the requirements modelling process.
The three essential elements of the Enterprise Model are agency, activity (action), and resources. The relations between these entities are defined in Figure 3.1 (Dobson and McDermid, 1990). The first element of the Enterprise Modelling is the entity agent, which can be regarded as the manipulator of the structure of the system and it is the only object that can create, destroy or modify other objects. It can only do that by the virtue of the responsibility associated with the agency. An agent could be regarded as an individual, an organisation as a whole or it could be a machine. The other entities are activity and resources, where an activity is an operation that changes the state of the system, and a resource is that which enables the agent to do the activity.

One of the advantages of the enterprise modelling techniques is that the diagram can be composed and decomposed for the purpose of ascertaining requirements at various level of agency (individual, group or organisation). Therefore, ORDIT believes that the enterprise modelling is capable of capturing conflict requirements at different levels within the organisation. At the organisation level the most important requirements may be to do with policy issues, while at the group level they may be concerned with being able to support collaborative work in an efficient manner and at an individual level priority may be given to job satisfaction.

![Figure 3.1: The generic concept in an ORDIT enterprise model](image-url)
Figure 3.1 shows three kinds of relationships, the first relationship is between agent entities, which is called structural relationship, and is essentially a responsibility relationship. As mentioned before this relationship is central concept to ORDIT the reason is that it depicts the relationship between agents, which in turn shows the structure of the organisation. The second relationship is between an agent and an activity, which is called a functional relationship. The third relationship is between agent and resources which is called an Access relationship, and the relationship between activity and resources, called the requires relationship that are not used within ORDIT. A resource entity can be one of two types, physical or logical. Physical resources are tangible objects such as raw materials, time or money. Logical resources are like information, telecommunications services, etc. When modelling the organisation from the enterprise projection viewpoint (ANSA, 1989), resources act either as tokens of responsibility, signifying that an agency has a binding responsibility upon some object, or as object for which some agency is responsible. Relationships between resources (resource models) and between actions (activity models) are of less interest within the ORDIT methodology.

Figure 3.2 shows the three levels of abstraction in the ORDIT modelling language. These three levels are the responsibility level, role level and activity level, which are very valuable to the ORDIT analyst as they allow the analyst to describe the socio-technical systems at different levels of detail.

The difference between responsibilities, obligations, and activities, and the relationships of activities to responsibilities through obligations, is the central tenet of the ORDIT modelling framework. This is based on the idea that workers execute activities in order to discharge the obligations imposed on them by virtue of the responsibilities they hold. These obligations describe the job or role of an agent, and are the link between responsibilities and activities executed.

The distinction between responsibility and obligation is that a responsibility is for something (a state of affairs) whereas an obligation is to do (or not to do) something that will change or maintain that state of affairs. Thus a set of
obligations must be discharged in order to fulfil a responsibility. As such, obligations define in what way the responsibility holder is responsible, and how the responsibilities can be fulfilled.

Using enterprise modelling a problem solver can model and understand how the organisational attributes such as responsibilities and obligations are established, flow through an organisation and are then discharged or fulfilled. This will then help the problem solver to understand better how a computer system would function within the organisation.

![Diagram of Responsibility relationship (Contractual, Service)](image)

![Diagram of Role Relationship (Power, Peer)](image)

![Diagram of Co-worker Relationships](image)

Figure 3.2: The entities and the relationships between them in the three ORDIT models
3.3 The Concept of Role

ORDIT describes an organisation as a set of related work roles for the following reasons:

- A role is a descriptive concept that can be used to represent many different organisational realities from the formal and structured to the fluid and unstructured.

- Treating a role as a basic building block makes it possible to move between organisational requirements and the requirements of individual users (e.g. from the organisation's role in a project to the way these responsibilities devolve to the roles of members of the project team).

- A role defines task responsibilities and thereby functionality requirements.

- A role defines the relationships between role holders and the behaviour they expect of one another which in turn defines many non-functional requirements.

Therefore, the concept of role allow us to distinguish between:

- An agent' associated obligations such as accountabilities and responsibilities to other agents.

- Activities that interact through information flows and are structured into tasks and operations.

The benefit from this distinction is to represent and analyse the relations between these concepts, and to represent the way in which they operate in real organisations.
Figure 3.3 is an example of the basic building blocks of ORDIT enterprise modelling diagram, which shows the roles involved in a university library such as in the case study example in the next chapter. The diagram in figure 3.3 shows two kinds of relationships. The functional roles (Request services-Provide services) which are shorthand for the kind of behaviours that the parties may engage in (the service requester can request to borrow a document and the service provider will provide the document). The structural role (Client-Server) is shorthand for the framework of obligation that permits and gives meaning to those behaviours.

The lines that join the functional and structural roles represent the fact that a relation between two agents may be one of interaction or one of commitment. Thus figure 3-3 embodies the policy that the client affects the requester and the server affects the provider.

3.4 The concept of structural, functional and contractual roles

When modelling an organisation a distinction is made between two concepts of a role, a structural role, which is a relationship between agencies or agents (e.g., Supervisor-Subordinate), and a functional role, which is a relationship between agents or agencies and activities. The purpose of this distinction is to enable the analyst to represent and analyse the relations between the functional and structural concepts and to express the way in which they operate in a real organisation.

Structural role: A structural role is defined by the set of responsibilities that bind to it. Each responsibility in the set in turn defines a set of obligations. Each obligation defines either a set of tasks that the role holder is engaged in
performing or a state of affairs that the role holder is engaged in either maintaining or bringing about. These tasks and state of affairs are derived from the problem owner and should reflect the nature of the enterprise modelling.

The set of structural roles that an agent can hold is divided into three types, a power relationship, a peer relationship and a service relationship. These relationships are described in the following section.

The Power relationship: In this power relationship, one agency has the power to make and enforce demands on another agency. It is important to know that the enforcement of these demands may be made by a third agency. An example of this relationship is the supervisor-subordinate relationship that can exit in most organisations. The types of power relationships that can exist between two agencies within an organisation can be defined with reference to the types of interactions that are meaningful for the two agencies to engage in. For example, if a manager punishes his employees and the employees think that the punishment was unfair then they may appeal to a higher authority, which could be a higher manager or the law court.

The Peer relationship: In this relationship two or more agents share a common power relationship with a third party. It is important to know that this power relationship should be of the same type. In a peer relationship there is no implication of enforcement, in fact, it is exactly the lack of this attribute that is characteristic of peer relationships and makes them special. When two agents are in this relationship they may request from each other to perform various services, but they lack the facility or the power to enforce execution. As a result, agreement to perform a service is achieved by means of negotiation. An example of a peer relationship is that of the colleague relationship.

The Service relationship: In this relationship one or both of the agents have the power to invoke the execution of a predefined and agreed task by another agent. This task will in some way relate to both the invoking and executing agent. An example of this relationship is consumer-supplier relationship, where one agent acts as the consumer of a service while another agent acts as the supplier of the
service. The difference between a service relationship and a power relationship is that when the consuming agent is dissatisfied with the service provided by the supplying agent the consuming agent may appeal to a third agent. It is this third agent that has the ability to enforce its judgements on both the supplying and consuming agents.

Functional roles: The functional relationship links together two functional roles in different agents or agencies where the agent or agency is called a role holder. One of the purposes of functional relationships is to define the behaviour that a role holder may engage in with another role holder within the context of a structural relationship. In defining and modelling the behaviour of a role holder, the problem solver is in fact defining and modelling the set of allowable functional relationships that can exist for that particular role holder. The behaviour that one role holder may engage in with another takes the form of interactions. The context of these interactions is defined by the functional relationship within which they take place.

Contractual role: From the perspective of the organisation and the information projection, information is only meaningful when considered along with the contractual relationships and conversations that define it. For example, eight digit number, such as an account number, is meaningless unless the contracts and the conversations that define the relationship between the owner of the number and the bank are also defined. The way in which the information projection attempts to capture information requirements is by modelling the contractual relationships that can exist within an organisation along with their organisational context. In order to capture correctly these requirements a classification of contractual relationships is essential.
Consumer-Supplier relationship: The nature of the consumer-supplier contractual relationship is one of a supplier delivering a predetermined service that the supplier is required to deliver which something that is established via negotiation process. This process is something that both the supplier and the consumer are required to have been engaged in prior to the service invocation. The key to understand this relationship is to understand that the service is requested by the consumer.

Client-Server relationship: In this relationship both parties may engage in the process of service invocation. The client may invoke a service supplied by the server and the server may offer the service to the client without a prior service invocation from the client. The contractual relationship is used to define not only the nature of the service but also the conditions under which that service may be invoked by the client and offered by the server. An example of such a relationship is a client server computer system where the client is using a password service that is managed and maintained by the server. Thus the client may request that his copy of the password be updated, or the server may force the client to update his/her copy of the password.

Consumer-Provider relationship: In this relationship the provider begins to provide a service to the consumer. Thus this relationship might be considered as an opposite relation to the consumer-supplier contractual relationship. The consumer-provider relationship is used to define not only the nature of the service but also the condition under which that service may be invoked by the provider and used by the consumer.

Customer-Supplier relationship: In this relationship one of either party is able to engage in a conversation with the other party. The purpose of this conversation is to establish another contractual relationship along with the rules governing its existence and meaningfulness. An example of this contractual relationship is salesperson-customer. In this relationship the purpose of the conversation is to purchase an item and thereby establish a contractual relationship.
3.5 The Concept of Agency

ORDIT methodology introduces the concept of agency in order to differentiate between social and technical objects (i.e. between people and computers). A machine may perform the same tasks as a person, but the person will hold responsibilities for those tasks in contrast to the machine, which cannot hold responsibility. Therefore a person can be considered as an agent that hold the agency.

An agent holds a particular set of responsibilities that comprises an agency. Thus depending on how responsibilities in a social system are allocated and combined, so agencies are composed and decomposed. An agent is not the same as an individual human or a role. It differs from an individual in that an individual may hold more than one agency simultaneously. Also an agent differs from a role in that a role is not merely an agency or a collection of agencies but also includes a set of relationships with other agents. "Since an agency is considered as a coherent set of responsibilities, it permits the discussion of issues related to the change in and reallocation of responsibilities when some functions or agents in the system are proposed to be automated" (Dobson, et al, 1992).

3.6 Concluding Remarks

The aim of ORDIT methodology is to concentrate on looking at an IT system with a socio-technical approach rather than a technical approach only. This is due to the fact that people in organisation work in groups and in a co-operative way. Therefore, when designing a system it must support this way of working. The purpose of the ORDIT method is to support the identification and transformation of organisational requirements into precise statements, which can be operated upon by system designers. Comparing with other methodologies, ORDIT's modelling may be started at a very early stage to help in exploring the system boundaries and in identifying stakeholders.

To discuss the human requirement of the socio-technical system, ORDIT conceptual framework consists of four subprocess models namely scope, system
Chapter 3

The ORDIT Methodology

models, requirement generation, and solution options. In the first subprocess the boundaries of the system and the major players are identified. In the second subprocess the existing system is modelled in order to be discussed with problem owners and to obtain suggestions for new solutions. In the third subprocess, new user requirements are elicited in order to be adopted in the new system. In the last subprocess various solutions are generated for the new system and the problem owners have to choose the most appropriate. The main important point to mention is these four subprocess are mutually supportive and are not in sequence, the whole process is iterative. Through the responsibility model ORDIT can analyse the organisational structure which embodies the policy of the organisation. Moving to the lower level of abstraction ORDIT defines the roles and jobs of agents in the obligation level. The last level of abstraction is the activity level where actions are defined in order for the obligation to be discharged.

ORDIT provides a framework called the enterprise modelling for representing the IT system within an organisation as well as describing the overall objectives of a system in terms of agency, actions, and resources. Through the relationships between each of these entities ORDIT is able to define the following:

- The structural relationship between agents which can define the structure of the organisation.
- The functional relationship between agent and action.
- The access relationships between agent and resources.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

4.0 Introduction

This chapter introduces the University Library Case Study (Wieringa, R. J., 1996) which is a study of the library at the Free University at Amsterdam. The University library is responsible for providing services for students and staff, and also users from other universities. The validation of the hypotheses (see Chapter 1) against this case study will take the following two forms.

- The ORDIT methodology will be used to model the existing system of the Library and provide solutions for the future system. Through applying the case study to ORDIT the modelling techniques and tools used in the methodology will be demonstrated.

- Through applying the case study to ORDIT it is possible to highlight the strengths and weaknesses of the methodology.

4.1 The University Library Case Study

The functions of the Free University library are: (1) to acquire documents containing information that is of use for scientific research and education; (2) to catalogue these documents; (3) make them available; (4) preserve them; and (5) to act as a custodian of the documents it has acquired. The library serves not only the Free University but also many other scientific research or education institutions, as well. The only prerequisite for using the library is to show a valid identity. The majority of the library users are students or staff at the Free University.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

The library is divided into departments that more or less reflect the structure of the University. Therefore each faculty has a library department related to it.

A user can borrow a book for three weeks. At the end of the allowed lending period, a user should return the book or else renew the borrowing. Renewal can only be done when there is no reservation for the book. If a user does not return of book or does not renew the lending period, action is taken after one extra week, by sending a reminder to the user. So a user is reminded of his/her obligation to return the book four weeks after it was borrowed. If it is still not returned or renewed, a second reminder is sent after seven weeks. After the second reminder, the user still has one week to respond. If one week after the second reminder there is no response, he or she must pay a fine of Dfl 70 and is not allowed to borrow any more books until the book is returned and the fine is paid.

Any user can reserve books that are currently borrowed by someone else. If a user loses a book, he or she has to report this to the administration, who will issue an invoice for the price of the book.

For some years now, the library has experienced problems that cause an increasing hindrance to the library in the realisation of its primary function, making scientific documents available to its users. An unknown number of books and journal issues are lost or stolen, and it is not often known which of the two is the case. Sometimes, a book, which is registered as present, cannot be found on the shelves and there is no record of it being borrowed by anyone. On the other hand, a book is registered as borrowed or even as stolen may be found on the shelf. There are no reliable statistics for the use of the documents and of their availability, such as the ratio between reservations and borrowings. The availability of documents is further decreased because some users, especially University staff, borrow books for months or even years without bothering to return them.

These problems have budgetary consequences, as lost or stolen documents must be replaced and the cost of this is added to the normal cost of paying for journal
subscriptions and the acquisition of books. In view of cuts in university funding by the government, the budget will probably decrease over the next few years. At the same time, scientific publishers start new journals almost every month, and tend to double the subscription rate every few years. Most subscriptions are in US dollars, and due to the fluctuation in the dollar rate, this price increase may pass unnoticed in some years and hit extra hard in other years.

The long-term objective of the library is to improve the level of service currently provided to the user, and to look for possibilities to provide a new service. As part of the realisation of the first objective, organisational measures are taken that aim at making more efficient use of the financial means at the disposal of the library than is done now. These measures are described below.

The need to eliminate some problems experienced by the library is recognised, as is the need to spend the library budget more efficiently, all double subscriptions to journals should be terminated, so that for each journal, there is at most one subscription owned by the University. Similarly, books already present in the University library in one department should not be bought by another, unless there is a good reason for doing it.

An information system should be installed that supports library staff in the stricter enforcement of library rules. For example, the borrowing limit of three weeks should be strictly maintained, and to support this enforcement, a report should be produced each week on documents which are borrowed for longer than their permitted lending period, together with a standard letter that is sent to the user. In addition, once every year, all users are to be sent a list of lost or stolen books, so that they become aware of the problem.
4.2 Applying ORDIT Methodology on the Library Case Study

The ORDIT methodology concentrates on identifying the organisational requirement, which can be found in systems that are placed in a social context. When modelling the organisation ORDIT tries to identify important factors such as responsibilities and obligations, values and ethics, and power structure. The ORDIT process for developing socio-technical system has four interrelated subprocesses:

4.2.1 Scope

The purpose of scoping is to determine the important players (stakeholders) and establish the boundaries of the existing system. One of the important tasks of scoping is to understand the purpose and structure of the organisation units that will be involved in the development of a new system. All of these tasks are essential to the planning of the study.

4.2.1.1 Decide on perspectives to be modelled

At this stage a meeting should be held with the Head librarian in order to identify the existing problems that need to be solved. During the scoping interview, the Head librarian describes the world in which the users are operating and identify problems that are preventing the existing system of the University Library system from completing its work. The problems that were identified are as follows:

- Too many documents are lost or stolen.
- Library members keep documents too long.
- There are too many reservations in proportion to borrowing.
- There is no reliable use of statistics.
- The budget will probably shrink over the next few years.
- The current budget is overspent.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

- The dollar rate fluctuates unpredictably, which causes unpredictable rises in the cost of journal subscription.

After identifying the problems in the existing system, the parties concerned (or stakeholders) and their roles in the University Library were identified as well. The stakeholders that are involved are as follows:

- Library Members
- Librarians
- Treasurer
- Circulation Desk
- Faculties

4.2.1.2 Define system boundaries for the chosen prospective, and identify responsibility relationships within this boundary.

Having agreed on the general scope of investigation, it was then possible to identify in more detail the boundary to the problem by identifying those stakeholders or agencies within the library system of interest, and also outside the library system who have an effect on it. The result was a top-level organisational context diagram. This shows the external agencies to the library organisation and the type of structural relationship that these agencies have to the library system.

Using the responsibility model, the diagram in Figure 4.1 shows three groups or agencies in the library case study. The two external agencies, Publisher and Member, represent systems that generate input or that receive output from the library system.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

The above diagram (Figure 4.1) shows that the agent entity University Library has two structural relationships, one with the member entity and the other with the publisher entity. It also shows that the member has a client-server structural relationship with the University Library and the publisher entity has a supplier-customer structural relationship with the University Library as well. This is represented in the real world as the service contract that exists between the three agents.

In addition, the functional relationships which are depicted in the diagram as thin lines, show the nature of the structural relationships between the three entities: the member can request the service from the library and the library then has a responsibility to provide that service. In the same way, the university library can request documents from the publisher and the publisher has the responsibility to provide the documents that have been requested, depending on the service contract.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

The function of each entity is illustrated in the diagram by the functional relationships between them, these relationships are; Request service-Provide service and Request document-Provide document. The diagram thus embodies the policy that the service provider is affected by the server and the requester service is affected by the client. In the same way, the document provider is affected by the supplier and the document requester is affected by the customer.

4.2.2 Modelling Stage

The purpose of this stage is to provide a set of models in order to present the current understanding of the socio-technical system. The existing system of the University Library was described in terms of the system itself and its organisational environment and then this description was agreed with the problem owners. One of the advantages of this stage is to identify the responsibilities and obligations in the organisation in order to find out how the responsibilities and authorities are going to be changed when introducing the new system.

4.2.2.1 Define the top-level responsibilities within the system boundary.

At this step a top-level responsibility model is created in order to show the pool of responsibilities that arises from the contractual relationships with external agents and from implementation of the organisation's policies.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

University Library

Main Library

Responsibility for: Acquiring document containing information that is of use to

Responsibility for: Provide of all adequate services to

Responsibility for: Keeping expenses of library within budget to

Responsibility for: Acting as a custodian of the documents it acquires to

Responsibility for: Coordinating with other faculty libraries to

Publisher

Member

Treasurer

Responsible for:
Payment for Document to

Faculty Library

Responsible for:
Keeping expenses of library within budget to

Administration

Circulation Desk

Responsible for:
Provide adequate services to

Figure 4.2: Top-level system responsibility diagram

The top-level responsibility diagram in Figure 4.2 shows the agencies within and outside the University Library as well as some of their responsibilities and responsibility relationships that they hold towards each other. For example, when a person becomes a member of the University Library, one of the library's responsibilities is to give an adequate service to that member. The purpose of this diagram is to depict the existing system by identifying the responsibility relationships between the organisational units that are involved in the development process. Hence, it is possible to see what changes have been made to those responsibility relationships when the new system is developed.
4.2.2.2 Create conversation diagram

Every relationship between one agent entity and another implies a conversation that creates some sort of communication link between them permitting the exchange of information. Therefore, the first step we have to make at this stage is to create a conversation diagram of the scenarios talked about during the process of becoming a library member in order to ascertain the following:

- Obligations held;
- The appropriate level of detail of obligations;
- Critical resources.

At this stage, the important thing to concentrate on is not who holds the obligations but what those obligation are.

![Diagram](image)

Figure 4.3: A simple example of a conversation diagram
4.2.2.3 Construct an abstract model showing the pool of responsibilities and obligations within the system as a whole.

Once some understanding of the current system had been obtained at the top-level responsibility model it was decided to describe the system at a lower level of abstraction, namely that of the obligations associated with responsibilities.

The benefits of listing all the obligations under each responsibility to which they belong are two fold:

- To track the policy implementation through the organisation.
- To define all actions that are necessary to fulfil a responsibility.

At this stage the responsibilities of the librarian agency toward other agencies are identified with its related obligation.

Responsibility for: Acquiring documents containing useful information

(To Members)

Obligations:

- To contact other libraries so as to provide documents that were otherwise not available.
- To contact publishers for new books and journals.
- To assess the most borrowed documents in order to provide more of them.
Responsibility for: Keeping expenses of library within budget.

(To Treasurer)

Obligation:

- To give a good reason for buying new or existing documents.
- To provide a reliable use of statistics.
- To make sure the library budget is not exceeded.
- To give a detailed description of the purchased documents or journals.

Responsibility for: Providing adequate services.

(To Circulation Desk)

Obligations:

- To catalogue new and returned documents in order to make them available to members.
- To facilitate borrowing services.
- To facilitate reservation services.
- To facilitate return services.
- To contact other faculty libraries for unavailable documents
Responsibility for: Acting as a custodian of documents.

(To Administration)

Obligations:

- To prevent document from being stolen.
- To prevent documents from being ruined.
- To acquire fines when documents are lost or stolen by members.

Responsibility for: Liasing with other faculty libraries.

(To Faculties)

Obligations:

- To provide documents when requested from other faculty libraries.
- To allow members from other faculties use the library.
- Co-ordinate with other faculty libraries before a new document is ordered from the publisher.

The responsibilities and obligations defined above show the responsibilities that the librarian agency holds towards other departments. In addition, the obligations related to these responsibilities depict the functions that have to be carried out in order to discharge those responsibilities. At the obligation level, one can reason about the duties that agents have as a consequence of their responsibilities, and can examine what it is that role holders need to do rather than how it is achieved. These responsibilities and obligations are constructed depending on the existing system and the problem owners have to give their approval.
4.2.2.4 Abstract agency model.

This model is constructed to show some of the responsibilities grouped into agencies and act as a tool for use in future scenario generation.

Circulation Desk Agency

- Adequacy of service provided for members.
- Issue membership cards for students and staff
- Inform members when to collect a reserved document

Treasurer Agency

- Act as a custodian of the library financial budget.
- Providing money to a faculty library when

Administration Agency

- Make sure that rules and procedures are implemented within the Library.
- Make higher decisions for the benefit of the Library.
- Take library departments’ suggestions in order to implement them when possible.
Faculty Library

- Acquiring documents containing information that is useful to the scientific research and education.
- Make documents available for members.
- Catalogue library documents.
4.2.3 Requirement Generation

4.2.3.1 Produce a model of the existing system showing its structure.

Figure 4.4 shows the modelling of the existing system and the structural relationships that arise from the infrastructure and the power hierarchy within the organisation. The structural relationships show the obligations that an agent holds with respect to other agents, such as supply documents, and consume documents.

![Diagram of University Library](image)

Figure 4.4: Infrastructure diagram showing the structural obligations held by each role in the University Library.

The above diagram (Figure 4.4) concentrates on the structural aspects of the organisation. The diagram shows that the library has Server-Client relationship with the member agency, which tells us that there already is a responsibility upon the library through its circulation desk to serve the member of the library. It is
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

possible now to ask the stakeholders “to whom does the responsibility bind?” and “what access rights exist concerning the fulfilment of this responsibility?” The reason for asking these questions was to build up and validate a shared picture of what was going on in the organisation. If the member of the library believed that the responsibility had not been properly fulfilled then there were a set of formal steps, which could have been invoked to resolve the situation.

In the Server-Client relationship the circulation desk defines what service is required by the member for the library to fulfil its responsibility by performing its service. The relationship also defines that the circulation desk is responsible for performing all services that are needed from the members in order to use the library. It was then possible to ask the question “what access rights exist for the member to use the library service?” This question was asked to find out what library resources can or cannot be used by a member.

The Supplier-Consumer relationship between librarian and circulation desk shows that there is a responsibility upon the librarian to supply the required documents for the circulation desk in order to fulfil its responsibility. The relationship between the librarian and the treasurer section shows that librarian agency has the responsibility to provide all information needed in order to buy the new document for the library. The treasurer agency has the responsibility to make sure that the money needed for buying new documents does not exceed the assigned budget for each faculty library and the main library at the university. The new document will be catalogued and made ready for members when they request it.

The relationship between librarian and publisher is defined by the structural relationship Supplier-Customer where the publisher has the responsibility to supply the correct document required by the library within a certain time. It was then possible to ask the question “what access right does the publisher have in order to fulfil their responsibility when supplying new documents”.

Looking at our problem list, it is found that there are problems in the acquisition activity and circulation desk activities. The problem in the acquisition activity
shows that duplicate acquisitions are performed by faculties without any co-
ordination between them. As the purpose of the current research is not to solve all
the problems in the university library case study, but to clarifying the way of
modelling in ORDIT methodology, an attempt will be made only to solve the
circulation desk problem.

The relationship between a librarian in the main library and a librarian in a faculty
library is a peer-peer relationship. This relationship defines the type of work
between those two agencies, which can include co-ordination and work
similarities. Therefore they could be joint in one agency, if the university wanted
to do that in the future.

4.2.3.2 Construct a role relationship diagram of the existing system.

At this step the university library is decomposed into its subcomponents as
depicted in the diagram in Figure 4.5. The rectangular boxes represent agents
entities and links between functional roles shown by thin lines called functional
relationships. The links between structural roles shown as thick lines called
structural relationships.

By decomposing the university library into sub-agencies it is possible to explore
and draw out the implications of how the organisation is structured. It is also
possible to use these diagrams to elicit requirements by asking questions such as
“what is the communication medium through which the functional relationships
flow?” and “what are the responsibilities that reside within the structural
relationships?”

To model the circulation desk agent in the existing system, one should focus on
this agent and see how functions are actually performed. The resulting model of
the circulation desk can then serve as a base for discussing possible alternative
ways of performing the activity.
When constructing a set of enterprise models it is important to keep in mind the types of questions that the diagram attempts to answer. In the library case study the questions being addressed are concerned with administration, members and circulation desk as the operations of these agents are going to be reorganised and restructured.

Figure 4.5 shows that we have decomposed the functional relationship between the member agency and the circulation desk agency into three sub-processes, Borrowing, Reservation, and Return. These three sub-processes are the services that are provided from the circulation desk agency to the members of the library. The two agents, Member and Circulation desk, are divided into three sub-agents in order to describe in detail how the activities are performed between them. Looking at figure 4.5, it is possible to see the functional relationship Create document loan-Deliver and update document between circulation desk and member that defines the borrowing /renewal process between the two agents. Members have to go to the circulation desk in order to create a loan for a document whenever they want to borrow a document. At this stage the member has the responsibility to show a valid member ID and a document title. If the document is not available, members have the right to reserve the document through the functional relationship Create reservation-Confirm reservation. Members are responsible for providing the information needed for reservation in order for the reservation agent to confirm that no previous reservation has been placed on the same document. If a document is returned to the library, the return agent is responsible for informing the member that the document he/she has reserved has been returned, this relationship is shown by the functional relationship Notify member-Accept notification. The library has the right to cancel the reservation if the member has not collected the document within ten days.

When a document is reserved the reservation agent has the responsibility of sending the reservation information to the borrowing agent in order not to release the document for borrowing unless the borrower is the same as the reserver,
otherwise the request for borrowing is rejected. This relationship can be seen from the functional relationship Send document reservation–Accept document information. At the same time the reservation agent has the responsibility for sending the document reservation information to the return agent in order to hold the document reserved when it is returned by the member.

Members are liable to return documents to the library at the right time. When a document is not returned on time the return agent has the responsibility to notify the member of the document delay. The functional relationship Notify member–Accept notification, describes this relationship. If a member returns the document on time then no action has to be taken against the member. If a member loses the document then the return agent has to inform the administration. The administration has the responsibility for issuing an invoice and sending it to the member so that the member will pay the price of the lost document, this functional relationship can be seen by Send invoice–Pay invoice.

The problem of not keeping track of documents comes from the fact that the employees of the circulation desk are not recording the information correctly when using the manual system.

Looking at the model of the existing system, three requirements are identified which need to be added to the new library system each of which correspond to the requirement relationship in the responsibility, role, and activity models respectively. The reason for changing the role of the return agent is to do with the problem of not keeping track of returned documents.
Figure 4.5: The existing system of circulation desk
4.2.4 Solution Capture

4.2.4.1 Draw role relationship diagrams of the proposed system

At this stage the implication of the design options are analysed and discussed with relevant stakeholders in an iterative way. The acceptability of the preferred option is agreed with the problem owners and other stakeholders, ensuring that the option meets the formal model of requirements.

Figure 4.6 shows the modelling of the new or proposed system for the University library. Based on the understanding of the problems of the University Library, the model in Figure 4.6 is considered to be the preferred future option to solve the existing problems. If this model is chosen then a new information system will be installed to support the library staff in the enforcement of library rules.

Using the new role modelling in Figure 4.6, it is possible to control the services provided to the members of the University Library. The diagram shows that the circulation desk has the responsibility, through its return agent, to register the returned document in the files and update the return list. This process can be seen through the relationship return document and update return list between member and return agent. Another responsibility given to the return agent is the responsibility of informing the borrowing agent whenever a book is returned. This process is depicted in the structural relationship Provide-Consume, which is embedded in the functional relationship send returned document information to the borrowing agent in order to update their borrowing list. The reason for adding these two responsibilities in the new system is to solve the problem of not keeping track of returned and borrowed documents. The final responsibility given to the return agent is to provide a statistical report of all returned documents to the administration agent.

More responsibilities are added to the circulation desk as well in the new system. These responsibilities are depicted in Figure 4.6 through the borrowing and renewal agent. Each time a document is borrowed by a member the borrowing
agent has the responsibility to record this document in the borrowing list in order to keep track of the borrowed document. This relationship is depicted in the Request document-Provide document between member and borrowing agent at the library. When a document is borrowed the borrowing agent has the responsibility for informing the return agent in order for the return agent to update their returned list. This can be seen in the relationship Provide-Consume between the borrow, renewal agent and return agent. The final responsibility that the borrowing and renewal agent has is toward the administration agent. In this responsibility the borrowing and renewal agent has the responsibility for providing a statistical report on all documents that are borrowed or renewed by members. This is depicted in the relationship Provide-Consume between the borrowing and renewal agent and administration agent.

The Peer-to-Peer relationship shows that these three agents have to work as a team in order for the circulation desk to do its mission. For example, the reports that shows the ratio between the borrowed and returned document should be issued from the borrowing/renewal and return agents working together.
Figure 4.6: The future system of the Circulation Desk
4.3 Strengths of ORDIT Methodology

1. One of the strongest points of the ORDIT methodology is the enterprise modelling language that is used as a tool for capturing and eliciting organisational requirements through different levels of the organisation see Figure 3.2 in chapter-3.

2. The responsibility model used in the ORDIT methodology is a powerful tool for defining the policy and the structure of the organisation. For example, when listing all the responsibilities and obligation for the librarian agency (section 4.2.2.3) we were able to trace the policy of the librarian towards all other agencies in the University Library case study. In addition figure 4.5 defines the structure of the circulation desk agency within the library system.

3. ORDIT concentrates on user participation and job satisfaction, which are important elements for information system development. Through its organisation elicitation process ORDIT tends to involve the users in the process of producing different set of models for the existing system and then discussing solutions using future models. As an example, Figure 4.6 is a model that was constructed from the viewpoints of the user and not the system analyst.

Furthermore, through defining the obligations and activities for each department by using the role (Figures 4.5, 4.6) and activity models, ORDIT is able to define the agents’ work role and give them job satisfaction.

4. ORDIT uses the concept of an agent in order to distinguish between a human agent and a physical agent (such as computers) when modelling a system.

5. ORDIT used the concept of role in order to describe the job required by users and make them satisfied with what they do. See the role diagrams in Figures 4.5 and 4.6.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

4.4 Weaknesses of ORDIT Methodology

1. ORDIT methodology is not a complete system design methodology but rather it is a methodology that identifies a series of complementary activities for requirements capture. It is shown in the library case study that ORDIT finished when all the organisational requirements were captured and specified.

2. Although the ORDIT methodology adapts the socio-technical approach it does not explain how the social and technical part of the system are merged to ensure compatibility within the methodology, for example, how the technical part of the system is evaluated against the job satisfaction and future change.

3. The Problem Analysis process in ORDIT methodology is not supported by suitable tools for expressing and documenting the problems for the problem owners in an organisation.

4. ORDIT methodology does not address the business needs of the organisation when modelling an information system.

5. ORDIT does not address the business strategy of the organisation when modelling an organisation.

4.5 Concluding Remarks

In this chapter ORDIT methodology has been applied to the university library case study to identify the strength and the weaknesses of the methodology. Some of the strong points of ORDIT's modelling techniques are the use of the enterprise modelling language and a powerful responsibility model for defining the policy and the structure of the organisation. ORDIT also provides participation and job satisfaction using concept of agents and concept of role. Although ORDIT has strong points it has its weaknesses too. The main weaknesses of the methodology are failing to address the business needs and strategy for the organisation.
Chapter 4 Applying the ORDIT Methodology to the University Library Case Study

Using the responsibility model the problems of the library system are defined and the boundaries are determined. Section 4.2.4 shows the modelling of the existing system and the proposed changes that has to be implemented when modelling the future system. In addition to user participation the methodology adopts the iterative approach where users are consulted throughout the four stages. Section 4.2.5 is to do with modelling the new system that have the new requirements which have been captured and elicited from users through applying the enterprise modelling language.
Chapter 5 ISAC Methodology

5.0 Introduction

The purpose of using the ISAC methodology (Lundeberg, et al., 1981) is to evaluate the problem-oriented approach that is used in the change analysis phase. Using the change analysis as a first stage in the proposed new methodology enable the system developer and the problem owners to concentrate on identifying the business problems in the organisation before starting to solve them. Another benefit is finding out what changes should be aimed at to solve these problems.

5.1 ISAC Methodology

ISAC (Information Systems work and Analysis of Changes) is a methodology designed for the development of information systems and analysis of changes in the organisation. Lundeberg, Goldkuhl and Nilsson developed ISAC in the early seventies at the University of Stockholm (Lundeberg, 1982). The purpose of the ISAC approach is to specify information systems in a number of small, manageable, and connected steps in such a manner that both users and designers understand the contents. As Michael et al (1986) concluded, Although the methodology covers all aspects of information system development it has its strength in the analysis and design stages only.

ISAC was developed in order to ensure that the business gets the information system it needs. To reach this goal, it starts with an organisational problem analysis that tries to find real solutions to the real problems. ISAC seeks to identify the fundamental causes of users' problems in order to solve aspects of them where appropriate.

"The methodology starts at an earlier stage than most methodologies and does not assume that the development of an information system is necessarily the solution
Chapter 5

ISAC Methodology

to the problem" (Avison and Fitzgerald, 1988). If a solution requires an information system development, then the methodology continues developing this system by starting a detailed study of the business activities to be supported by the system. If the development of an information system is not needed then the role of the methodology terminates. The reason for this it is thought that an information system that has no value in its own right and does not benefit people should not be developed. This is why ISAC is considered as a client-oriented approach.

To increase the fit between the delivered system and the business needs, both the problem analysis and the activity study includes a high degree of participation of users, developers and sponsors of the information system. In these two stages the users and sponsors analyse their problems themselves and perform an activity study where the developer's role is to facilitate this process. This is because ISAC authors believe that the people best equipped to do this analysis, in terms of their knowledge, interest, and motivation, are the users themselves.

The ISAC methodology consists of five levels:

- Change Analysis
- Activity Studies
- Information Analysis
- Data System Design
- Equipment Adaptation

5.2 Change Analysis

The purpose of change analysis is to identify the business problems and clarify what types of changes are required in order to do something about the identified problems and needs experienced in the activities of the organisation. This stage concentrates on investigating where the problems really are before starting to try to solve them. It contains the following steps:
5.2.1 List of Problems

The first step in the change analysis stage is to identify and create a list of the existing problems and reach an agreement among problem owners, developers and the sponsors of the development process on these problems. A problem owner is a person, group, stakeholders, agency, or user that is dissatisfied with the current situation. Problem owners are called “interest groups” in ISAC but, because ISAC is restricted to analysing problems and solving them for the problem owners, it is better to use the term "problem owners".

The first attempt is to look at current problems and any anticipated future problems. Table 6.1 in Chapter 6 is an example of a list of problems table.

5.2.2 Analyse the Problems

The problems identified are now subject to a cause-effect analysis. The reasons for analysing the problems are to (1) concentrate on the problem itself not the solution to the problem (this makes room for alternative solutions); (2) minimise the problem list by concentrating on underlying problems only; (3) identify derived problems. Specialist persons that have an expert knowledge of the problems under study should perform the cause-effect analysis.

In addition, carrying out the cause-effect analysis, a quantitative study of the problems must be performed. The benefit of this study is to enable us to assess the severity of the problem before making a decision to invest in a solution process.

Quantifying the problems has three advantages. First, only a quantitative characterisation of these problems can give an indication of the potential benefit to be derived from solving the problems. Second, only if a problem is quantified it is possible to know in the future whether and to what extent it is solved. Third, if quantification shows that a problem has only a slight impact on the business, the sponsor may make only a small budget available for solving it, or the problem owners may drop it from the problem list completely. For the unquantified problems, it will be harder to know in the future whether and to what extent they are solved than it is for the quantified problems.
5.2.3 Making an Activity Model of the Current Business

At this stage an activity model (A-graph) is developed to represent the activities performed in the current business situation and the flow of material information between those activities. These activities are the ones to which the identified problems relate and which are undertaken by the concerned problem owners. The activity model is a functional view that shows processes performed on inputs to produce output. Therefore, it is used as a platform for generating and discussing alternative solutions and discussing possible changes to the business in the next step. Figures 6.1 through 6.9 in Chapter-6 are examples of A-graph models.

An A-graph represents three things:

1. Sets which can be: real or physical sets, like, for example, people or documents; message sets, containing only information; or they can be a combination of both.

2. Organisation activities.

3. Flows which can be shown in detail or simply as an overview.

Activities are the transformation of sets into new sets. Flows represent the movement of sets to and from activities. They are very similar to data flow diagrams, except they also represent physical objects as well as data flows. Figure 6.1 in Chapter 6 shows an example of an overview A-graph concerned with the Circulation Desk of the library. A-graphs depict a hierarchical structure capable of showing an overview picture, which can then be broken into other A-graphs to show the detail at lower levels. Each A-graph is supplemented with text and property tables. The property tables show quantitative information such as volumes.

5.2.4 Analyse Goals

A goal is a desired situation. The problem owners identified before have different general goals. These goals can be found by interviewing problem owners and asking them questions about the situation they would like to achieve.
At this stage goals of the development process are specified and listed to find a means to evaluate solution proposals. Making a list of goals may require a lot of negotiation, because different problem owners may have contradictory goals, and agreement between them is at least desired on the business mission. Table 6.8 in Chapter-6 is an example of the Library goal analysis.

5.2.5 Define Change Needs

One of the reasons for developing the list of goals is to find out why the problems identified above are problems at all. Conversely, for each goal we can identify the reason why it has not been achieved by listing all the problems that prevent the goal from being achieved. Therefore at this stage a matrix of problems against goals is developed to find clusters of related problems. Each cluster defines a change need that will act as a goal of the development process. Table 6.9 in Chapter-6 is an example of the Library change needs.

At this stage all the previous work comes together and enables the methodology to progress. What is needed (the goals) is compared to what is available. The differences between what is needed or wanted and what is available are defined as the needs for change. These needs are prioritised according to the values of the different problem owners involved. This evaluation of the importance of the various needs for change leads directly into the next stage, which is the generation and study of change alternatives.

5.2.6 Generate Change Alternatives

At this stage all ideas are written down without evaluation or critique and summarised in a table of change alternatives. Once possible changes have been generated they are described through a new A-graph. Table 6.10 is an example of change alternatives.

5.2.7 Make Activity Model of Desired Situations

In order to be able to evaluate the results of the alternative packages, each change alternative package is described in a new activity model (A-graph with text pages
and property table). Figures 6.3 and 6.4 are examples of A-graphs models for the desired situation.

5.2.8 Evaluate Alternatives

For each alternative package that is modelled, estimation is made of their problem solving power. Each package is analysed and evaluated for different viewpoints, e.g., human, social, and economic. This is to investigate which problems are solved and which are introduced by each package. Table 6.13 is an example of an alternative evaluation.

5.2.9 Choose an Alternative

The last part of the change analysis is to choose a change approach. The sponsor is presented with a report about the evaluation of alternatives and then chooses one of them. The developer may suggest a choice, but it is important that the sponsor authorises it. If the recommended changes do not involve information systems then the role of ISAC methodology terminates.

5.3 Activity Study

If the recommended changes involve a new information system then it will be possible to continue with this step by modelling and describing the new system in a number of ways using A-graphs. The activity models that were produced in the change analysis for the purpose of identifying needs for change were at an overview level, and these need to be decomposed and investigated.

The purpose of this stage is to decompose these overview activity models into information subsystems, specify required subsystem properties, and specify interfaces between the subsystems. The objective is to reach the level where the information system is separated from the human activities, which it supports, such that each process on the graph has input and output that are either information or some other flow, for example, materials.
5.3.1 Decomposition into Information Subsystems

The chosen model is elaborated until information systems can be identified. For each desired information subsystem, it is determined whether it is formalisable or not. An example of an unformalisable information system would be informal contacts, know-how and so on. The formalisable subsystems are divided into those that can be automated in terms of cost, social desirability, etc, and those that can not. The automated subsystems are further classified according to whether they involve calculations or involve storing and retrieving information. Figure 6.6 is an example of the decomposed borrowing activity at the library.

5.3.2 Analysis of Information Subsystems

For each system to be automated, desired properties, called ambition levels are specified, then each ambition is tested for feasibility. ISAC recommends the following ways of testing feasibility:

- Find out if projects with similar objectives have realised information systems with similar ambition levels.

- Simulate the ambition levels.

- Build a prototype that satisfies a number of the properties of an ambition level and do a field test with it, i.e. let users actually work with it.

- Carried out a cost-effect analysis for each identified level of ambition.

Ambition levels

At this stage of the activity study each information system is studied separately in terms of its cost and benefits. It is also determined whether it could be automated or not. This is done by classifying each information system under one of the following steps:
1. Impossible to formalise: An example of this type of information subsystems is informal activities in which information is exchanged with the client informally.

2. Formalizable subsystems:

 A) Not automated system: For example photos can be scanned and then printed in order to be stored in manual archives or digitised and stored in computer memory. Due to reason of privacy, however, it may be decided that this activity is not suitable for automation.

 B) Automated systems: The library circulation desk is an example of this.

5.3.3 Co-ordination of Information Subsystems

The activity study ends with an analysis of the relation between the different information subsystems, and the assignment of priorities to them.

5.4 Information Analysis

The purpose of information analysis is to describe what the future information system will contain and how it will be performed. This stage will not be performed until one or more information systems have been identified as formalisable. The techniques used in the information analysis assume a formalisable and automatable information system, although it is indicated that a limited degree of information analysis might be appropriate for non-automatable systems.

For each information system, the input and output information sets are extracted from the A-graph for the system. At the same time, an iterative process of function and data analysis is performed. Method steps used in the information analysis are:
5.4.1 Precedence and Component Analysis

Precedence analysis involves the analysis of the information precedence relations in an information system, where component analysis involves the analysis of the structure of information sets. This is the ISAC term for functional analysis. The analysis of information precedence relations is documented in I-graph and text-pages. The nodes of the I-graph represent information precedence relations and the process are disregarded, this precedence analysis is hierarchical and starts with overview descriptions, which are elaborated and detailed successfully (see Figure 6.10 as an example). If the output information set from an information system is clearly derivable from its input set then precedent analysis stops. If, however, the derivation is not clear, then the information set that immediately precedes the output information set must be deduced. If the derivation of this set from the input to the system is not clear, then precedent analysis continues. The precedents from each information set are analysed until the input sets are reached. Precedence analysis is in this way equivalent to functional decomposition in other methodologies. Reasoning about the transformation that needs to be performed on information sets requires knowledge of the structure of information, and that is why component analysis is performed at the same time as precedence analysis. In component analysis the structure of the information sets is studied and classified into one of the following:

- A basic input to the information system.
- A basic output from the information system.
- Information coming from a preceding process or a set of permanent information.

An information set may be compound, that is, it may itself contain information sets. An elementary information set consists of one or more messages, where each message consists of an identification term and one property term. An "almost elementary" information set consists of a number of elementary information sets with common identification terms. Thus an almost elementary information set
corresponds to a logical record with an identifying key and a number of data item
types (property terms). The component analysis is documented in a C-graph which
is a hierarchy showing the decomposition of an information set into subsets (see
Figure 6.11 as an example.).

5.4.2 Process Analysis

In this step the information processes are identified and documented in a list of
processes. The reference code from the I-graphs is used to keep track of these
processes. An information process is the transformation of one or more
information sets into some other information sets or set. These transformations are
at the logical level, and do not show the representation or implementation aspects.
Each process can be described separately, the description is documented in
process table (decision tables) which consists of two parts: prerequisite and
calculation. Table 6.20 is an example of the process analysis table.

5.4.3 Property Analysis

The property analysis is a continuation of the property descriptions already made
during change analysis and activity studies. Requirements that are specific to the
environment in which the system is used must also be specified. The relevant
property values are documented in property tables. Examples of such properties
are volumes, response time, frequency, and security requirements.

5.5 Data System Design (DSD)

Up to this stage the ISAC activities of change analysis, activity studies and
information analysis have concentrated on producing a specification of
requirements for information systems. The purpose of the data system design is to
design a technical solution to meet the requirement specification and to prepare an
equipment-independent data system solution to the specified information
subsystem. Therefore it is the first part of the data-oriented system work. In the
data-oriented system work a processing philosophy is considered in order to
distinguish between manual and automated parts, both of which must be designed.
During the activity studies a distinction is made between manual and automatable parts of an information system (see, e.g., Table 6.20 in Chapter 6). During the information analysis stage the information contents of the automatable parts are described in detail. In data system design a decision must be made about future ways of processing. For example, what part of the data system should be manual processing, manual processing with technical aid, computer solution with patch processing, computer solution with direct processing or other automated processing. Also at this stage a decision must be made on which systems should be centralised and which systems should be distributed with the consideration of cost and reliability.

The next step of data system design is data structure design and program delimitation. During the information analysis stage decomposition has been made to data and functions below the level of files and programs. The design of a permanent data set is performed by consolidation of these data set (for example, elementary information sets) into higher-level groupings on the basis of functional dependency, and secondly, by considering access method requirements and search paths for efficient retrieval and storage.

Program delimitation consists of putting a boundary around a group of process defined in the I-graph. The number of processes grouped will partially determine the size and complexity of the program, and these two factors are a constraint on the delimitation. The other important constraint is the nature of the decisions that have been made about file and database design.

The next step is to specify each program, which is completed in some detail in the ISAC approach, and the “Jackson Structure Processing” method is recommended at this stage.

The last step of data system design is the design of manual parts. During the study of processing philosophy it has been decided on which parts of the automatable information subsystems were to be automated and which were to be manual. ISAC suggests that the affected problem owners should participate in the design of the manual system.
5.6 Equipment Adaptation

The purpose of this section is to choose specific equipment and then to adapt the equipment-independent solution to this choice. The data system design has produced an equipment-independent solution and a decision has been made on a suitable solution. This is now adapted to fit a particular equipment. Equipment adaptation consists of:

5.6.1 Equipment Study

During the equipment study a decision must be made on specific equipment. This decision depends on the following factors:

- Identification of alternative equipment strategies: The alternatives that could be defined are use available computer capacity within the company, use a service providing company and purchase or rent a new equipment.

- Calculation of the size of the computer system: For each configuration (equipment strategy) the necessary resources are calculated, e.g., volumes, response time, printer speed and memory capacity.

- Manufacturers introduction: Information is collected about manufacturers and distributors, which can provide the equipment needed, and their prices for each alternative specification.

- Evaluation of equipment strategies: the advantages and disadvantages of the alternative strategy are compared with selected decision criteria. The result is documented in an evaluation table.

- Choice of suitable equipment: The final choice of equipment is documented with supplementing property tables.
5.6.2 Adaptation of Computer-Based Routines

The adaptation of computer-based routines is done in two main steps:

- Design of physical data structure: At this step the technical storage and equipment aspects of data structure are considered.

- Design of adaptation routines: A special routine called an adaptation routine is designed that can transform physical structures into an equipment-independent structure.

5.7 Tools Used in ISAC Methodology

ISAC uses three activity models as a graphic description techniques which take the design process through different levels of abstraction, leading from activity analysis (A-graph) to information subsystem analysis (I-graph) to component data analysis (C-graph). These graphs are closely related to each other as one can complete the other.

5.7.1 A-graph

An A-graph describes an activity in the organisation as a set of interrelated subactivities. Each subactivity can be described in a more detail on a separate A-graph. Through the analysis and description of subactivities a hierarchy of A-graphs is created. An A-graph is constructed in the change analysis phase to describe the current situation and in the activity study phase to describe the alternatives of the change situation in the future.

5.7.2 I-graph

An I-graph is used in the information analysis phase. An I-graph describes information sets and precedence relations between information sets. A-graphs are needed to build the I-graphs. They are more precise than A-graphs in that they not only show input and output sets but also show relationships between sets. The I-graph is described by which precedence relationship connect the outputs of the A-graph with the inputs. So activities of the A-graph are decomposed.
5.7.3 C-graph

C-graph and an I-graph are both constructed during the information analysis phase, therefore there is a close relationship between the two graphs. Precedent analysis, resulting in an I-graph, and component analysis, resulting in a C-graph, are performed in an iterative process. A C-graph describes the structure of information sets. An information set depicted in an I-graph maybe compound and it may itself contain information sets. So a C-graph is a hierarchy graph showing the decomposition of an information set into subsets.

5.8 Concluding Remarks

ISAC methodology is designed for the development of an information system and analysis of change in an organisation. The main purpose of the methodology is to specify the information system in small manageable and connected steps.

ISAC consist of five stages, which concentrate on users and business mission of the organisation. These five stages are Change Analysis, Activity Study, Information Analysis, Data System Design, and Equipment Adoption. During Change Analysis, current business problems are analysed, different solutions are investigated and one solution is chosen. The chosen solution is modelled using an A-graph. This A-graph depicts a high level specification for the required business situation in terms of its activity. Change Analysis is a general problem solving method. If the solution involves building one or more information systems, then the Activity Study determines the required information system properties. In addition, the important decision whether or not to automate one or more information systems is made. For each system to be automated, an Information Analysis is performed, which results in a behaviour specification for each automated system. As Wieringa, (1996) stated, the term "Information Analysis" is misleading, because in most other methods it is for the initial stage of information system development or information needs analysis. The final stage is the Equipment Adaptation, which involve finding of the most appropriate computer system for the organisation.
Chapter 6 Applying ISAC to the University Library Case Study

6.0 Introduction

In this chapter ISAC methodology will be applied to the University library case study that was used in chapter 4. The validation of the hypothesis (see chapter 1) against this case study will take the following two forms.

- The ISAC methodology is used in order to model the existing system and provide solutions to the problems of the University Library. The business mission and strategy of the library organisation are identified as well.

- Through applying ISAC to the case study, it is possible to highlight the strengths and weaknesses of the methodology.

6.1 Change Analysis

The first phase of ISAC methodology is the change analysis, which contains the following tasks:

6.1.1 List of Problems

Using the ISAC approach for the library case study an initial meeting has to be made with the Head librarian. The developer learns about a number of problems, which he/she writes down as follows.
Chapter 6 Applying ISAC to the University Library Case Study

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
<th>Related Activities Sets in A-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Documents are lost or stolen</td>
<td>Too many documents are stolen from shelf or stolen</td>
<td>6111A, 2A</td>
</tr>
<tr>
<td>P2</td>
<td>Documents are returned late</td>
<td>Documents are kept too long by library members</td>
<td>631A</td>
</tr>
<tr>
<td>P3</td>
<td>Too many reservation</td>
<td>Due to the previous problem there are too many reservation in proportion to borrowing</td>
<td>6C2, 621A</td>
</tr>
<tr>
<td>P4</td>
<td>There are no reliable use of statistics</td>
<td>There are no reliable Statistics of the use of the documents and of their availability.</td>
<td>6C</td>
</tr>
<tr>
<td>P5</td>
<td>The budget will shrink over the next few years</td>
<td>Due to the cuts in university funding by the government, the budget is shrinking.</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>The current budgets is overspent</td>
<td>Scientific publishers tend to double the subscription rate every few years</td>
<td>L4</td>
</tr>
<tr>
<td>P7</td>
<td>The dollar rate is fluctuating</td>
<td>Most subscriptions are in US dollars, which can cause unpredictable rises in the cost of journal subscription.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: List of problems

Each problem from the above Table 6.1 is studied and analysed in order to determine whether it is worth devoting a development process or not. The problems that are easy to solve or very difficult to solve for example, P5 and P7, are eliminated from the development process. The reason for writing the problems in the problem list and then eliminating them is to let the users be aware of them, talk about them, and then reach an agreement that, at least at this stage, they should be ignored.

6.1.2 List of Problem Owners

After identifying the problems to be solved, the next step is to identify the groups of people or agencies that are affected by the same problems. This task is similar to the steps performed in the second stage in ORDIT methodology where the boundaries to the problems are identified. Stakeholders and agencies that are within the system or have an effect on the new system are also identified.
Chapter 6 Applying ISAC to the University Library Case Study

Representatives from each of these groups or agencies should participate in the project team.

A matrix of problems against problem owners is developed at this stage as shown in Table 6.2. Identifying the problem owners (stakeholders, agencies, and end-users) requires social skills, because some groups or agencies may be interested in suppressing the interest of others. The system analyst must ensure that the problem owners themselves, facilitated by the developer, should construct the matrix connecting the problems with problem owners.

<table>
<thead>
<tr>
<th>Problem Owners</th>
<th>Problems No.</th>
<th>Activities in A-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculties</td>
<td>P5</td>
<td>C4</td>
</tr>
<tr>
<td>Library Member</td>
<td>P1, P2, P3</td>
<td>C6</td>
</tr>
<tr>
<td>Librarian</td>
<td>P1, P2, P4, P5</td>
<td>C6</td>
</tr>
<tr>
<td>Treasurer</td>
<td>P1, P4, P5</td>
<td>C4, C5, C6</td>
</tr>
<tr>
<td>Circulation Desk</td>
<td>P1, P2, P3</td>
<td>C6</td>
</tr>
</tbody>
</table>

Table 6.2: Initial matrix of problems against problem owners

6.1.3 Analysis by the Interest Group

This process is performed by the project group (which may consist of a representative from the Treasurer, representative from the Circulation Desk, end user of the required system, an outside specialist, and Head librarian.) who have expert knowledge of the problems under study. These people have to do a cause-effect analysis for the problems that have been identified. The first version of the problem table of the library case study is depicted in Table 6.1.

During the cause-effect analysis for the library case study, a number of important problems were discovered. One cause of overspending the budget is that different departments multiply acquire documents and some of them have subscriptions to the same journals. This is called the problem of multiple acquisitions. The problem of multiple acquisition and lack of coordination are added to the problem list.
Chapter 6 Applying ISAC to the University Library Case Study

The problem of the high reservation/borrowing ratio is caused by the poor availability of books, which is in turn caused by the two problems of losing/stealing books and of not returning books. One of the causes of lost/stolen books is improper supervision on the return of documents, which makes it possible for library members to steal a book that someone else returned but has not yet been registered as received by the library. Another cause of lost/stolen documents is that all books and journals are stored in rooms open to the library members, so that they can browse through them but can also easily steal them. This problem is added to the problem list.

The librarian insisted that an important cause of lost/stolen documents and of the fact that documents are kept too long is bad member mentality. It is quite possible to see this as a fact of nature, like the problems of shrinking budgets and fluctuating dollar rates, but the librarian believes that an education campaign can change this mentality, so the developer added it to the problem list and cause effect graph.

Finally, it was discovered during the analysis that one cause of the overlong borrowing period is that library personnel have no time to go through the list of borrowed books each week to find out which books have been borrowed longer than their allowed borrowing period. Manual procedures also increase the cost of levying fines. The problem list is updated accordingly as it is seen in Table 6.3.
Table 6.3: Matrix of final problems after updating

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
<th>Related Activities Sets in A-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Documents are lost or stolen</td>
<td>Too many documents are stolen.</td>
<td>6111A, 2A</td>
</tr>
<tr>
<td>P2</td>
<td>Documents are returned late</td>
<td>Library members keep documents too long.</td>
<td>631A</td>
</tr>
<tr>
<td>P3</td>
<td>Too many reservations</td>
<td>Due to the previous problem there are too many reservations in proportion to borrowing.</td>
<td>6C2,621A</td>
</tr>
<tr>
<td>P4</td>
<td>There are no reliable statistics of library use.</td>
<td>There are no reliable Statistics of the use of the documents and of their availability.</td>
<td>6C</td>
</tr>
<tr>
<td>P5</td>
<td>Overspend budget</td>
<td>Scientific publishers tend to double the subscription rate every few years.</td>
<td>4C</td>
</tr>
<tr>
<td>P6</td>
<td>Multiple acquisition</td>
<td>Documents are multiply acquired by different departments, and have subscription to the same journals.</td>
<td>4B</td>
</tr>
<tr>
<td>P7</td>
<td>No coordination of acquisition</td>
<td>There is no coordination between department for acquiring documents.</td>
<td>L4</td>
</tr>
<tr>
<td>P8</td>
<td>Sloppy return procedure</td>
<td>Improper supervision on the return of documents.</td>
<td>L631</td>
</tr>
<tr>
<td>P9</td>
<td>Bad member mentality</td>
<td>Members keep documents too long.</td>
<td>L631</td>
</tr>
<tr>
<td>P10</td>
<td>Open store</td>
<td>All documents are stored in rooms open to members.</td>
<td>L0</td>
</tr>
<tr>
<td>P11</td>
<td>Manual procedure</td>
<td>The procedure of borrowing and returning documents is manual.</td>
<td>L6</td>
</tr>
<tr>
<td>P12</td>
<td>Cost of not levying fines</td>
<td>When document are returned late no fine is charged.</td>
<td>L5</td>
</tr>
</tbody>
</table>
Chapter 6 Applying ISAC to the University Library Case Study

The matrix of the problems against problem owners is updated as well and depicted in Table 6.4.

<table>
<thead>
<tr>
<th>Problem Owners</th>
<th>Problems</th>
<th>A-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculties</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Library Member</td>
<td>P1,P2,P3,P8,P9</td>
<td>C6</td>
</tr>
<tr>
<td>Librarian</td>
<td>P1,P2,P4,P5,P6,P7,P10, P12</td>
<td>C6</td>
</tr>
<tr>
<td>Treasurer</td>
<td>P1,P4,P5,P6,P7,P11,P12</td>
<td>C4,C5,C6</td>
</tr>
<tr>
<td>Circulation Desk</td>
<td>P8,P9,P11</td>
<td>C6</td>
</tr>
</tbody>
</table>

Table 6.4: Matrix of the problems against problem owners

6.1.3.1 Property table

In addition to doing a cause-effective analysis, a quantitative study should be made of the problems see Table 6.5. The reason for this is to decide whether to invest in the solution process or not, therefore the severity of the problems must be assessed first. For example, how many documents are stolen each year? For how long do borrowers exceed allowed borrowing periods? What is the ratio between reservation and borrowings?

In the library case study, it was found that not all problems could be quantified. It can be seen from Table 6.5 that the cost of not levying fines is a negligible problem compared with the other problems.
<table>
<thead>
<tr>
<th>Problems Identified</th>
<th>Problem Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1. Too many documents are stolen.</td>
<td>A total of 4500 titles are known to have been stolen. On the average, 200 titles are</td>
</tr>
<tr>
<td></td>
<td>stolen each year, with an increase of 10% per year</td>
</tr>
<tr>
<td>P2. Members keep documents too long.</td>
<td>On the average, a document is returned three weeks after it ought to be returned.</td>
</tr>
<tr>
<td>P3. There are too many reservations in proportion to</td>
<td>The average ratio is 30 reservation for every 100 borrowings, with an observed maximum</td>
</tr>
<tr>
<td>borrowings.</td>
<td>of 50 per 100.</td>
</tr>
<tr>
<td>P4. There are no reliable statistics for library use.</td>
<td>All figures in this table are estimates.</td>
</tr>
<tr>
<td>P5. The budget is overspent.</td>
<td>The current annual budget of Dfi 900 000 is overspent by Dfi 200 000.</td>
</tr>
<tr>
<td>P6. Multiple acquisition</td>
<td>20% of the 3000 journal subscriptions are duplicates.</td>
</tr>
<tr>
<td>P8. Sloppy return procedure</td>
<td>Not quantifiable.</td>
</tr>
<tr>
<td>P9. Bad member mentality</td>
<td>Not quantifiable.</td>
</tr>
<tr>
<td>P10. Open store</td>
<td>Not quantifiable.</td>
</tr>
<tr>
<td>P12. Cost of not levying fines</td>
<td>Approximately Dfi 900 is not collected a year.</td>
</tr>
</tbody>
</table>

Table 6.5: A quantification matrix of some identified problems

6.1.4 Description of Current Activities

At this stage the activities related to the identified problems and the activities undertaken by the concerned problem owners are modelled in an activity model called an A-graph, which depicts the functional view of the library system and shows processes performed on input to produce outputs. These aspects are not just concerned with information, but includes physical activities, input and outputs, such as the information real set collecting a book (6B) in Figure 6.1. The activity model is supplemented with text-pages in order to document it, see Table 6.6.
A-graphs are similar to data flow diagrams, except that they also represent physical objects as well as data flows as can be seen in Figure 6.1.

LIB

Analyst
Asad Al-Zaid

Subject: University Library

Overview

![A-graph for a university library](image)

Figure 6.1: A-graph for a university library
LIB Analyst Asad Al-Zaid
Subject: Library Activities

Overview

1A Publisher Confirmation for lib Acquisition
1B New Ordered Documents
1C Document Billing

2A Lost Documents Information
3A Borrow or Renew Request Information
3A12 Borrow Member ID

3A1 Borrow Request Information
3A2 Renew Request
3A21 Borrow Member ID
3A22 Renew Member ID

3B Documents Return
3C Document Reservation

4 Financial and Acquisition Activities
4A Documents Budget Information to Circulation Desk

5 Administration Activity
6 Circulation Desk
6A New Document Order Information to Financial

4B Document Order
4C Document Payment
5A Invoice
6B Book
6C Not Available Document Information
6C1 Book is Borrowed
6C2 Book is Reserved

Table 6.6: Text pages to A-Graph L0
Figure 6.1 above shows an A-graph with an overview of the activities in connection with the University Library. Table 6.6 shows a text page for this A-graph. The A-graph in Figure 6.1 illustrates three main activities or process:

- Financial and Acquisition
- Administration
- Circulation Desk

It also shows all the input and output information from these processes. For example, when the financial department wants to pay for a document, they would need to know the title of the requested document, the price of the new document and whether the document has been ordered before. The output information from the financial process contains the document that is ordered, and the invoice that is paid.

An explanation of how to use the graph is as follows: the input message sets "Title confirmed", "Document bill" and the real set "New document" flows into the activity "Financial". This activity produces two outputs message set which are "Document order" and "Document payment". Also the message set "Lost document information" flows into the activity "Administration" to produce an output message set called "document invoice". In the same manner, the input message sets "Borrow/Renew request", "Document reservation" and the real set "Document return" flows into the activity "Circulation desk". This activity results in two message sets "financial information" and "Document information" and two output sets which are the real set "Book" and message set "Not available document information".
Overview

Figure 6.2: A-graph L6 for circulation desk
Overview

3A
3A1
3A2
3A3
Borrow or Renewal Request
Borrow Request Information
Borrow Book Title
Borrow Book ID

3B
Document is Return from Member

3C
Reservation Request from Member

61
61A
Document Borrowing and Renewal
Request for Checking Title Reservation

62
Reservation Activity

63
63A
Return Document Activity
Documents Status Information

6B
6C1
Book
Book is Borrowed

6C2
Book is Reserved

6C3
Reservation Request Rejected

6C4
Reservation Request Confirmed

6D
Late Fine for Late return Documents

Table 6.7: Text page to A-graph L6
An in-depth description of the activities at the circulation desk is found in Figure 6.2. The three subactivities that can be performed at the circulation desk are;
- Borrowing Renewal (L61),
- Reservation (L62)
- Return (L63).

To start by considering the flow of information in the A-graph (L6) Figure 6.2, it is found among other things that documents are borrowed (3A), reserved (3C) or return (3B) by members through the circulation desk (L6). If member wants to borrow a document from the library he/she has to go to the circulation desk to place her/his request. When a borrow request flows to the borrowing activity (L61), the activity consists of checking to see if the document is available and not already reserved (611A). If the document is reserved (6C2), the borrower must be the same person as the reserver to be able to borrow the document (6C1), otherwise the request is rejected (6C3).

At the Reservation activity (L62), Figure 6.2, documents are checked for reservation. If document is already reserved and the request for reservation is performed from the same account then, document reservation request is confirmed (6C4), otherwise it is rejected (6C3). If the document is not reserved then this information has to be sent to the borrow and renewal activity to release the document for borrowing or renewal.

At the Return activity (L63), documents are returned by a member to be stored on the library shelves. The document’s return information is sent to reservation (L62) and borrow activities to inform them that the document is returned. Reservation (L62) will check to see if the document is reserved otherwise it is released for borrow (6112B), see Figure 6.6. Since all members can borrow documents some regulation has to be enforced to get the document back within a certain period of time. If a document is not returned within the allowed period of time a reminder has to be sent to members, especially when document is reserved by another member. If document is not returned after the second reminder then a late fine has to be issued for the members.
When members lose a document, they have to report it to the Administration (L5), Figure 6.1, in order to issue an invoice (5A) for the price of the document.

The Financial activity (L4) has to pay for the new ordered documents that are acquired from the publishers. In the existing system duplicate acquisition problem is performed by the different departments at the university. This problem will not be solved at this time however, the circulation desk problem is the only problem that will be explored in this thesis.

Previous activities in Figure 6.2 are more described by dividing them into subactivities and decomposing them in new A-graphs. For example, process 6 in Figure 6.1 is decomposed into (L61, L611, L612, L62, and L63) to solve the previous problems with the proposed system of the Circulation Desk. In the decomposed graphs, it is important that different graph levels must have exactly the same input and output sets for the same activity. However, sets maybe subdivided into subsets if necessary. In Table 6.7, the Borrow and Renewal activities are separated in order to give more detailed description of each process. The idea of the decomposition process is to get to the level where the information system is separated from the human activities which it supports, such that each process on the graph has inputs and outputs that are either information or some other flow, like materials. In figure 6.6, when borrow request arrives, the member has to present the name of document (3A11) and his/her ID, (3A12) to the Borrow Activity Desk (L611). A document check has to be performed to see whether the document is borrowed (6C1) or reserved (6C2). If document is available (not borrowed or reserved) the member will collect the document (6B) from the library. If document is not borrowed and not available it is considered to be lost (611IA), thus the final library index for that document is updated (L6112A).

When member wants to renew a borrowed document, the document is checked for reservation (61B). If the document is not reserved the renewal request is confirmed (612B), otherwise the renewal request is rejected (612C).

In the A-graph no. L62, Figure 6.8, the reservation activity is described. When a reservation request arrives, the member has to provide the title of the document
(3C2) and member ID (3C1) in order for the reservation activity to perform his/her reservation request. The checking reserved activity (L62) consist of checking to see whether the document is available and is not reserved. If the document is reserved, the reservation request is rejected (6C4). If the document is not reserved, the reservation request is accepted (621A) and the reservation record is confirmed (6C5). When the member collects a reserved document then the reservation request is deleted (621B).

The last A-graph L63, Figure 6.9, describes the Return and Follow-up activities in more detail. When a document is returned, the return activity (L63 I) will check whether the document is reserved to see if it must be placed on the reservation shelf and to check whether the returned document is late (6311A) or not. If the document is not returned on time and a second reminder is send to the member, the follow-up activity will issue a late fine (6E), which has to be paid before members can use the library again. When a document is returned on time and is not reserved, the Return activity puts it in the right place and updates the appropriate records accordingly.

Text pages

Text pages must come with each A-graph in order to document the contents of the sets and activities in more details. A text page is divided into three parts. The input sets are listed in the first part, the sets and activities within the frame are listed in the second part, and the output sets are listed in the third part. Table 6.6 and Table 6.7 are examples of the text pages.

The description of the current system can now be evaluated against the problem table in (Table 6.3). The test for evaluating whether the current description has been properly completed is whether all the relevant problems can be related to the current description. The right column of Table 6.3 relates the problems in the problem table to the activities and sets of the A-graphs. The right column of Table 6.3 shows that it has been possible to relate the entire problems in the problem table to the description of the current situation. Hence we can continue with the next step.
6.1.5 Description of Objectives

After finishing the description of the current situation, the problems are understood and the problem owners are known. A list of objectives of the development process is prepared. Table 6.8 shows some activity objectives that resulted from the process of negotiation with problem owners.

The current situation is now evaluated by comparing what we "want" (table of objective in Table 6.8) with what we "have" (the problem list in Table 6.3 and the description of the current situation in Figure 6.1 through Figure 6.2).

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Books should be maximally available</td>
</tr>
<tr>
<td>01.1</td>
<td>Books should be returned in time</td>
</tr>
<tr>
<td>01.2</td>
<td>The number of losses should be minimised</td>
</tr>
<tr>
<td>02</td>
<td>Keep library expenses within budget</td>
</tr>
<tr>
<td>03</td>
<td>Optimise the service of the circulation desk</td>
</tr>
<tr>
<td>04</td>
<td>Keep statistics accurate and up-to-date</td>
</tr>
</tbody>
</table>

Table 6.8: Problem owners' objective

At this stage problems are put into groups of similar problems that are related to similar objectives. One way to do this is to make a matrix of problems against objectives and try to find clusters of related problems.

6.1.6 Evaluation of Current Situation and Analysis of Needs for Changes

In the library case study, when the problem list was compared with the objective list in Table 6.8. The problems were transformed into needs for change. For each change need (project goal), a list is developed of the problems to be solved and the objectives that the change should help to achieve.
Chapter 6 Applying ISAC to the University Library Case Study

<table>
<thead>
<tr>
<th>Needs</th>
<th>Description</th>
<th>Problems</th>
<th>Priority</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Return procedure should be improved so that documents available and the service to the customer are maximised.</td>
<td>P2, P3, P8, P11</td>
<td>1</td>
<td>O1, O3</td>
</tr>
<tr>
<td>N2</td>
<td>Acquisition should be coordinated so that multiple acquisitions are reduced</td>
<td>P5, P6, P7</td>
<td>3</td>
<td>O2</td>
</tr>
<tr>
<td>N3</td>
<td>Statistics should be improved</td>
<td>P4</td>
<td>2</td>
<td>O4</td>
</tr>
<tr>
<td>N4</td>
<td>The possibility of theft should be reduced.</td>
<td>P10</td>
<td>1</td>
<td>O1</td>
</tr>
</tbody>
</table>

Table 6.9: Table of change needs

In the rest of the case study we will concentrate on the three needs for change with the highest priority: N1, N3 and N4.

6.1.7 Study of Change Alternatives

ISAC gives no guidance on how to generate ideas for change, except to say that an analysis of flows and activities might be helpful. Change alternatives can be reached after meeting with the problem owners. At this stage, alternatives are only ideas written down without evaluation; there are no exact rules for doing them. Evaluation will be done in the next step. During the change alternative process we have to investigate different alternatives of changing flows and/or activities. Can the flow occur in another way? Can the activities be performed in another manner? The answer to these questions leads to the change alternative document in Table 6.10.
Applying ISAC to the University Library Case Study

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Reduce theft by removing all documents from the reach of members</td>
</tr>
<tr>
<td>A2</td>
<td>Reduce theft by making all books with an indelible and invisible magnetic marker and place ports with sensors at library exits.</td>
</tr>
<tr>
<td>A3</td>
<td>Improve supervision on document return procedures by reducing the number of entries/exits to the library to one, and by organising a strict schedule under which there will always be one library functionary at the entry/exit desk.</td>
</tr>
<tr>
<td>A4</td>
<td>Facilitate the production of use statistics by implementing an automated information system.</td>
</tr>
<tr>
<td>A5</td>
<td>Facilitate automatic reporting on members who extend their borrowing period beyond allowable limits by implementing an automated information system.</td>
</tr>
</tbody>
</table>

Table 6.10: Table of change alternatives

Looking at the alternatives above in Table 6.10 it is realised that some of them involve changes to the information system of the library, including automation: others take measures not involving automated information system.

6.1.8 Make Activity Model of Desired Situations

Now it is possible to make packages of one or more change alternatives that are worth investigating. To investigate a package, an activity model has to be developed. This makes the package a possible topic of rational discussion and allows comparison with the current situation.

In the university library case study there are a number of packages that can be constructed from the available alternatives.

1- Change nothing at all. This package should always be included, simply because the possible changes has to be compared with the current situation.

2- A1: Put all documents in a separate storeroom.

3- A2 & A3: Use magnetic markers and reduce the number of library exits.

4- A4 & A5: Implement an automated information system.

A-graph models of the alternative packages are then developed for presentation to the problem owners. This is to make the problem owner look at the models, study them and choose the most suitable model for them with the help of the developer.
Chapter 6 Applying ISAC to the University Library Case Study

LIB
Analyst
Asad Al-Zaid
Subject: University Library

Overview

Figure 6.3: A-graph L0 for university library
Overview

1A Publisher Confirmation for lib Acquisition
1B New Ordered Documents
1C Document Billing

2A Lost Documents Information
3A Borrow or Renew Request Information
 3A1 Borrow Request Information
 3A11 Borrow Book Title
 3A12 Borrow Member ID
 3A2 Renew Request
 3A21 Renew Book Title
 3A22 Renew Member ID

3B Documents Return
3C Document Reservation

4 Financial and Acquisition Activities
 4A New Documents Order Information to Financial

5 Administration Activity
6 Circulation Desk
 6A Document Financial Information

4B Document Order
4C Document Payment
5A Invoice
6B Book
6C Not Available Document Information
 6C1 Book is Borrowed
 6C2 Book is Reserved
6D Document Statistical Report
 6D1 Reservation Statistical Report
 6D2 Return Statistical Report

Table 6.11: Text page to A-graph L0
Chapter 6 Applying ISAC to the University Library Case Study

LIB
Analyst
Asad Al-Zaid
Subject: Circulation Desk

Overview

Figure 6.4: The A-graph L6 for circulation desk
Overview

3A
3A1
3A11
3A12
3B
3C
61
61A
61B
62
62A
63
63A
6B
6C1
6C2
6C3
6C4
6C5
6E

Borrow or Renewal Request
Borrow Request Information
Borrow Book Title
Borrow Book ID
Document is Return from Member
Reservation Request from Member
Document Borrowing and Renewal
Borrow List
Request for Checking Title Reservation
Reservation Activity
Reservation List
Return Document Activity
Documents Status Information
Book
Book is Borrowed
Book is Reserved
Reservation Request Rejected
Reservation Request Confirmed
Document Overview Notice
Late Fine for Late return Documents

Table 6.12: Text page to A-graph L6
Elaborating the automation package, it was found necessary to add one or more activities to almost all the previous A-graphs. Figure 6.3 shows the added document statistical report (6D) to keep track of the availability of document and a report for borrowed documents is also issued. In Figure 6.4, a list of overdue notices (6C5) is constructed and a late fine (6E) is produced. Both activities should be performed daily. Lists of borrowing (L611A) and list of reservation (L622A) are added as well as the record of the document title and member ID for the borrowed and reserved documents respectively.

6.1.9 Evaluate Alternatives

At this stage an investigation is carried out in order to find out which problems are introduced by each package, and for whom. To make this, for each package, a matrix of problems against problem owners is made to indicate which problems are solved and which are introduced.

In the library case study, a matrix was constructed for the automation package (A4 and A5) together with A1 or with A2 and A3. An "O" in an entry means that the problem is solved for the problem owner and "X" means the problem is not solved.

The matrix in Table 6.13 shows that two problems have been introduced, P13 and P14. Problem P13 was introduced because the library members would experience the new situation as a rigid borrowing discipline. There is no guarantee that this would change member mentality, so this problem is not indicated as being reduced by this alternative. Problem 14 was introduced by solving problem p6 and p7. The automated package (A4 and A5) together with the magnetic marker and single entry option (A2 and A3) score best with respect to the development goals. In particular, they do not introduce the problem introduced by A1, that the users of the library cannot browse through the books anymore.
Table 6.13: Table of alternative evaluation

<table>
<thead>
<tr>
<th></th>
<th>Faculties</th>
<th>Library Members</th>
<th>Librarian</th>
<th>Treasurer</th>
<th>Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1. Too many documents are lost or stolen</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2. Documents are kept too long by members</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3. There are too many reservations in proportion to borrowings</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4. There are no reliable use statistics</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5. Overspent budget</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6. Multiple acquisitions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7. No co-ordination of acquisitions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8. Sloppy return procedures</td>
<td>O</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>P9. Bad member Mentality</td>
<td>O</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P10. Open Store</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11. Manual procedures</td>
<td></td>
<td>X</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P12. Cost of levying fines</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P13. Rigid borrowing discipline</td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14. No multiple acquisition</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.1.10 Choose an Alternative

At this stage the sponsor is presented with a report about the evaluation of alternatives and then chooses one of them. The developer may suggest a choice, but it is important that the Head librarian authorises this choice because it
significantly affects the use of resources in the rest of the development process. In the library case study it is decided that the following changes will be implemented in the library:

- Terminate double journal subscription.
- Library departments should not buy books already in the possession of an other department, unless there is a very good reason to do so.
- Journals cannot be borrowed anymore.
- Photocopiers will be installed in all library departments.
- An automated Information System will be implemented that registers all borrowings. It will produce a daily list of members who have not yet returned a borrowed book.
- Reservations will also be registered by the system.
- Each year, a list of lost or stolen books will be produced and distributed among members of staff at all faculties

All the required options above are modelled in the suggested future system for the library.

An important point to mention here is that problem owner including faculties and representatives from library members have to be consulted and negotiated within order to reach the desired decision

6.2 Activity Studies

This section deals with the analysis and design of activities of the organisation with the purpose of delimiting future information systems in such a way that they contribute to solving the problems and needs of the users (Lundeberg, 1981).

The A-graph models that are produced in the change analysis stage for the purpose of identifying needs for change were at a relatively high, overview level which needs to be expanded and investigated in more detailed level.
Chapter 6 Applying ISAC to the University Library Case Study

Figure 6.4 contains an A-graph of the future activities of the circulation desk. In order to meet the defined needs for change, alterations have to be made to the information systems described in this A-graph:

- Borrowing and Renewal Activity (L61).
- Reservation Activity (L62).
- Return Activity (L63).

Figure 6.5 and table 6.14 corresponds to the Borrowing and Renewal activity. These figures show the A-graph (L61) with the corresponding text-pages for the future borrowing and renewal systems. The activities contain two information subsystems:

- Borrowing system.
- Renewal system.

In the Borrowing and Renewal activity (L61), users of the library place their borrowing request (3A1) at the borrowing activity of the front desk. Information from the reservation list is required in order to check if the document is reserved (61B) or not. If the document is reserved (6C2), then the borrower must be the same person as the reserver or the borrowing process is rejected. If the document is available and not reserved then the book is collected (6B). In the renewal activity, the reservation list (62A) and borrow list (61A) are checked in order to renew the document (612B). After renewing the document, it is important that the borrow list is updated in order for the borrow activity to be informed. The new things added to the future system are the statistical reports on borrowed documents and renewed documents. Every time a document is renewed or borrowed the new system makes a note of this transaction in order to make a daily statistical report (6D1 and 6D2). This is to solve problem P4 in Table 6.3.
The descriptions of activities were then detailed so that the information systems appeared as delimited subactivities. An information system is delimited by stating its input and output messages sets. These are the boundaries to other activities.

Figure 6.4 depicts the A-graph for the Circulation Desk. Table 6.20 shows that the information subsystems Borrowing and Renewal, Reservation and Return are automatable. Therefore the preparation of further A-graphs for these parts is not required.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Calculating</th>
<th>Transport of message only</th>
</tr>
</thead>
<tbody>
<tr>
<td>L611</td>
<td>Borrowing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L621</td>
<td>Renewal</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L6111</td>
<td>Validate Borrowing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L61112</td>
<td>Update Lost Record</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>L61113</td>
<td>Get Document</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L6121</td>
<td>Check Renewal</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>L621</td>
<td>Checking Reserved Doc.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>L622</td>
<td>Valid Reservation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>L63</td>
<td>Return</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L63</td>
<td>Follow-up</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.14: Information analysis planning (process table)
Overview

![Diagram of borrowing and renewal process]

Figure 6.5: A-graph for borrowing and renewals (L61)
LIB Analyst Asad Al-Zaid Subject: Borrow & Renew

Overview

3A1	3A11	Borrow Request
3A12	Borrow Book Title	
3A2	3A21	Renewal Request
3A22	Renewal Book Title	
61A	Borrow List	
62A	Reservation List	
61	Borrow & Renewal	
611	Borrow Activity	
612	Renewal Activity	
612B	Borrow List Updated	
6B	Book	
6C1	Book is Borrowed	
6C2	Book is Reserved	
61B	Request for checking Document Reservation	
612B	Document Renewal Confirmed	
612C	Documents Renewal Rejected	
6D1	Statistical report on borrowed documents	
6D2	Statistical report on Renewed Documents	

Table 6.15: Text page for A-graph L61.
Overview

Figure 6.6: A-graph for the borrowing activity (L611)
Chapter 6 Applying ISAC to the University Library Case Study

LIB

Analyst
Asad Al-Zaid

Subject: Borrowing at the Circulation Desk
Overview

3A11	Borrowed Book Title
3A12	Borrowed Member ID
3A21	Renewed Book Title
3A22	Renewed ID Renewal

611	Borrowing Activity
6111	Check Document Availability
6111A	Document is Lost
6111B	Release Document Order
6112	Update Lost Title Record
6113A	Store Room (Master Index)
6113	Get Document
6113A	Update Borrow List

6C1	Book is Borrowed
6C2	Book is Reserved
6111C	Title is Not in Library Catalogue
61B1	Passed Member ID
61B2	Passed Title ID
6B	Book
6D1	Statistical report Borrowed document

Table 6.16: Text page for A-graph L611

137
Overview

Figure 6.7: A-graph for Renewal activity (L612)
Table 6.17: Text page for A-graph L612

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A2</td>
<td>Renew Request</td>
</tr>
<tr>
<td>62A</td>
<td>Reservation List</td>
</tr>
<tr>
<td>612</td>
<td>Renewal</td>
</tr>
<tr>
<td>6121</td>
<td>Renewal Activity</td>
</tr>
<tr>
<td>6121A</td>
<td>Borrowed List Updated</td>
</tr>
<tr>
<td>612B</td>
<td>Renewed is Confirmed</td>
</tr>
<tr>
<td>612C</td>
<td>Renewal is Rejected</td>
</tr>
</tbody>
</table>
Overview

Figure 6.8: The A-graph for the reservation activity (L62)
Chapter 6 Applying ISAC to the University Library Case Study

LIB

Analyst: Asad Al-Zaid

Subject: Document Reservation
At the Circulation Desk

Overview

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C1</td>
<td>Borrowing Member ID</td>
</tr>
<tr>
<td>3C2</td>
<td>Document Title ID</td>
</tr>
<tr>
<td>61A</td>
<td>Borrow List</td>
</tr>
<tr>
<td>62</td>
<td>Reservation</td>
</tr>
<tr>
<td>621</td>
<td>Checking Reserved Documents</td>
</tr>
<tr>
<td>621A</td>
<td>Accept Reservation</td>
</tr>
<tr>
<td>621B</td>
<td>Delete Reservation Information</td>
</tr>
<tr>
<td>622</td>
<td>Update reservation List</td>
</tr>
<tr>
<td>622A</td>
<td>Reservation List Updated</td>
</tr>
<tr>
<td>6C4</td>
<td>Reservation Request Rejected</td>
</tr>
<tr>
<td>6C5</td>
<td>Reservation Confirmed</td>
</tr>
<tr>
<td>6D3</td>
<td>Statistical Report on Reserved Documents</td>
</tr>
</tbody>
</table>

Table 6.18: Text page for A-graph L62
Figure 6.9: A-graph for the document return activity (L63)
Table 6.19: Text page for A-graph L63
Ambition levels

For each system to be automated (such as the circulation desk) a desired properties should be specified, called ambition levels. In this case study ambition levels included limits on response time, timeliness of output, volume and frequency of input, and requirements on the quality of input and output data see Table 6.19.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Measure</th>
<th>Current</th>
<th>High ambition</th>
<th>Low ambition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>Seconds in real time</td>
<td>Not applicable</td>
<td>2 sec. Avg. per day.</td>
<td>5 sec. Avg. per day.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 sec. Max.</td>
<td>20 sec. Max.</td>
</tr>
<tr>
<td>Volume of Transaction</td>
<td>Total number per day for library</td>
<td>30 avg. per day 60 max.</td>
<td>200 avg. per day. 300 max.</td>
<td>50 avg. per day 100 max.</td>
</tr>
<tr>
<td>Latency of data</td>
<td>Real time between event occurrence and database transaction</td>
<td>1 day avg. per year 1 day max.</td>
<td>1 second avg. per day 1 hour max.</td>
<td>1 sec. Avg. per day 1 day max.</td>
</tr>
</tbody>
</table>

Table 6.20: Table of ambition levels for some system attributes
Analysis of contribution. In A-graph L6 in Figure 6.4, the Return activity L63 is served by the Reservation List (L62A). A more detailed description of the activities in the Return is shown in Figure 6.9 and Table 6.18. The Reservation list (L62A) is used by the employees of the circulation desk to check the reserved documents. The Reservation List is checked before the document is released for borrowing again.

6.3 Information System

At this stage of the methodology, ISAC uses the precedent and component analysis. The precedent analysis uses an I-graph (Information precedent graph) in order to analyse information precedent relations in an information system. The component analysis uses the C-graph (Component relation graph) to analyse the structure of the information sets, which involves analysing the message type that describe the message sets. Comparing ISAC with other methodologies, the ISAC term for functional analysis is precedent analysis.

The first step to be made at this stage is to decide on the information subsystems that are going to be analysed. This is documented in the information analysis-planing table, see Table 6.20. The subsystems that require a precedent and component analysis are as follows:

- Borrowing (L6111)
- Renewal (L6121)
- Reservation (L621)
- Return (L631)

Document borrowing (L6111)

The transition from activity studies is performed in the following steps:

- From the A-graph L61 (Figure 6.5) it follows that the input sets are Borrow Request, Reservation List and Borrow List updated and the output sets are
Chapter 6 Applying ISAC to the University Library Case Study

- The output sets should consist of information concerning whether the document is borrowed, reserved, or not in the catalogue. This is in addition to the information concerning whether the book is already borrowed or not. A statistical report is also issued for all borrowed documents.
- An overview I-graph (BR) is drawn in Figure 6.10 to show the precedent analysis for the borrow desk.
- The information analysis planning table shows that no continued precedent analysis is needed.

The component analysis for Document Borrowing activity is performed in the following steps:

- The Updated Borrow list is subdivided into Member Details, Document Details and Document Borrowing Report.
- Member Details should consist of Member ID and Member Address. Document Details should consist of the Document Title and Document number. Borrow List Report should consist of the date and time of borrowed documents.
- In Member Details Information, Member is the identification term and the rest are property terms related to Member. In Document Details the Information Document is the identification term and the rest are property terms related to document.
- The result is documented in a C-graph in Figure 6.11.

The component analysis for the Statistical Report on Borrowed information is performed as follows:

- The Statistical Report is subdivided into Document Details, Report Date, and Statistical summary report.
- Document Details should consist of a document title and document number.
- Report Date should consist of status messages.
• Statistical Summary Report should consist of values such as Number of borrowing.

The rest of the information sets of the borrowing information follow directly in a similar manner.

Document Renewal List (L6121).

The overview I-graph (DN) for Renewal information is found in Figure 6.13 showing the precedent analysis. The corresponding C-graph is depicted in Figure 6.14.

• From A-graph L612 (Figure 6.7) it follows that the input sets are "Renew Request" and "Reservation list" and the output sets are "Renewal Confirmed" and "Renewal Rejected".
• The output sets should consist of information about whether the document is renewed or rejected.
• An overview I-graph (DN) is drawn in Figure 6.13 to show the precedent information analysis.

The C-graph for information set DN6A will have a similar structure as the previous C-graph constructed for information set (B3A).

Document Reservation (L621).

The overview I-graph (DR) for Document Reservation is found in Figure 6.15 showing the precedent information analysis. The corresponding C-graph is depicted in Figures 6.16 and 6.17.

The overview I-graph (DR) will have a similar structure as (BR) in Figure 6.10 and is therefore not repeated here. Corresponding C-graphs are found in Figures 6.16 and 6.17. The C-graphs will not be explained here because they have a similar structure as Figures 6.11 and 6.12.
Document return (L63).

The overview I-graph (R) for Document Return is found in Figure 6.18 showing the precedent information analysis. The corresponding C-graph is depicted in Figures 6.19 and 6.20.

The overview I-graph (R) will have a similar structure as (BR) in Figure 6.10 and is therefore not repeated here. Corresponding C-graphs are found in Figures 6.19 and 6.20. The C-graphs are not explained here because they have a similar structure as Figures 6.11 and 6.12.
Chapter 6 Applying ISAC to the University Library Case Study

LIB
Analyst
Asad Al-Zaid
Subject: Borrow

I-GRAPH
Date
8 August, 1998

No. B
Version 1

Figure 6.10: The I-graph for the borrow desk
Figure 6.11: The C-graph for updated borrow list (B3A)
LIB
Analyst
Asad Al-Zaid
Subject: Statistical Report on Borrowed Documents

C-GRAH
Date
8 August, 1997

No.

Version 1

Figure 6.12: The C-graph for the statistical report on borrowing (B5A)
Figure 6.13: The I-graph for the renewal desk
Overview

Figure 6.14: The C-graph for the renewal information (D6A)
LIB
Analyst
Asad Al-Zaid
Subject: Reservation

I-GRAPH
Date
8 August, 1997

No. DR
Version 1

Figure 6.15: The I-graph for reservation information
Figure 6.16: The C-graph for document reservation (DR4A)
Figure 6.17: The C-graph for statistical report on reservations (DR6A)
Figure 6.18: The I-graph for the return desk
Figure 6.19: The C-graph for the returned document information (R5A)
Figure 6.20: The C-graph for the statistical report on reserved documents (R7A)
6.4 Weaknesses and Limitations of the ISAC Methodology

From applying the ISAC methodology to the library case study it was found that ISAC has the following weaknesses:

1. The graphical tools used in ISAC generate large volumes of information-graphs supplemented with text pages and property tables (as can be seen in the Library case study). This can make the developer work out the model in so much detail that too much time will be lost in modelling a situation that should be changed.

2. The cross-referencing mechanism that is used in ISAC can be very cumbersome. The problem with this mechanism is when the methodology is applied to a large complex system. The large amount of information is overwhelming and causes confusion. In the library case study, for example, each graph has its own Text pages (Figure 6.2). Imagine that after finishing the modelling of the whole system in the organisation, during the revision process, it was found necessary to add a message set, or an input set has to be added to one of the A-graphs developed at the change analysis stage. To do so would require changing all the reference numbering in all the following A-graphs in addition to the text pages and the property tables. This process can take time and effort, especially when the people who are going to do this process are the users or problem owners who have no experience with this methodology.

3. When modelling a large system, "at the lower level of modelling, the activity model may not be understood by problem owners because of its complexity and too many attachments. Therefore it cannot serve as a means of communicating about alternative future situations" (Dale, A.G., 1983).

4. The process of decomposition followed in ISAC methodology may generate many graphs when the project is large and complex. This is due to the decomposing process of each activity in the overview A-graph model.
(Figure 6.1) into many subactivities until the desired model is reached. This may amount to 50 or 100 graphs, with each graph supplemented with text pages. This large amount of information may not be understood and can really create some confusion for the users. Miller, (1956) stated that the human brain can only handle +7 or −2 objects in the front of our conscious (short time memory) at any given time. To demonstrate this, imagine that we have 4 oranges, 90% of the population will imagine them as a one row of 4 objects, now imagine that we have 8 oranges, 90% of the population will imagine them as 2 rows of 4 oranges. What happened is our brain imposes a structure to handle the object complexity. Two rows of 4 oranges are equivalent of one row of eight, but 2 row of 4 oranges are actually two groups of 4 objects.

This is how our brain handles the complexity of objects. So in relation to our problem, when we have 50 graphs or more we can ask the question: how can the human brain handle this complexity? We have this problem because of the way the human brain deals with complexity. It deals with complexity by imposing a tree like structure, you can only store so many things and the bigger that tree gets, the more bits fall off. Also our short time memory can only remember a few things at a time, therefore by the time we reach the information-graphs at the lower level, we will have forgotten about the information-graphs at the beginning of the modelling.

5. When decomposing the A-graph models in the Activity Study stage, there is no indication of when to stop the decomposition. The methodology describes this approach as "carry the decomposition process so far that all problems can be related to some activities or sets in the A-graph or when basic unsplittable functions are reached".

6. The cross-referencing between sets in A-graph and the same set in I-graph is achieved by including the A-graph name alongside the I-graph entry, see Figure 6.10. The problem with this approach is that it creates a multiplicity
of names for the same set for no important reason other than creating a different string name.

7. Property tables are difficult to construct and there are no guidelines for producing them.

8. Although some people find the methodology easy to use, it needs a high degree of training in order to use it efficiently, especially when it is used by people who are new to the system analysis like novice users.

9. In the change analysis stage, the methodology does not create an overview modelling of the whole organisation like other methodologies. It takes the approach of modelling each subsystem individually such that changes proposed for the system cannot be seen for the whole organisation.

10. The ISAC methodology only addresses the technical part of the system and ignores the social part.

11. The ISAC methodology ignores the organisational issues when designing a system.

6.5 Strengths Of ISAC Methodology

1. The analysis of problems and user requirements in the Change Analysis stage is very thorough and well documented. This helps in the process of determining the problems and identifying the cause of these problems before starting to model the system. This can be seen through the graphs and tables developed in the first stage of the methodology. For example, see Figure 6.1 and Table 6.1.

2. One of ISAC advantages is that it creates a close relationship between the users, or problem owners and system analyst. Users are able to describe and analyse their own activities where system analyst's role is to give help and support whenever is needed. This process helps the users to understand their
existing problems and to present requirements to the analyst using A-graphs and tables.

3. Documenting user problems, user requirements (needs) and goals of the organisation in tables serves to help the communication process between system analyst and problem owners by providing records of decisions and agreements. This process is useful when a document is read by someone without knowledge of system development.

4. Before modelling the new system the ISAC methodology produces a number of possible solutions (change alternatives) allowing the problem owner to decide on the most appropriate solution for the organisation.

6.6 Concluding Remarks

The ISAC methodology has been applied to the University library case study to show its strengths and weaknesses. Using the library case study it was possible to test all the graphical tools and notations that are used within the ISAC methodology. The first stage of the methodology was used to identify the business problems of the library organisation, the problem owners that are associated with these problems, the change needs and the change alternatives. The advantages of this stage are firstly, the problems of the library are well investigated and documented, secondly, the business needs of the library are identified, and thirdly, the Library objectives are identified. The second stage, which is the activity study, models the future system to the library. The ISAC methodology tries to model each information subsystem on its own that is why a separate A-graph is constructed for the borrowing, reservation, and returning systems. The information system stage shows the functional decomposition of the library system using the I-graphs and C-graphs. In the equipment adoption stage the problem owners choose the appropriate hardware and software for the new library system.
Chapter 7
A Critical Evaluation of ISAC and ORDIT Methodologies

7.0 Introduction

The evaluation criteria presented in this chapter have been developed through the analysis work that has been done earlier in chapters 4 and 6. In chapter 4, the use of ORDIT methodology its tools, strength and limitations are explained. In the same manner the use of ISAC methodology its activity model, its strengths and limitations have been explained in chapter 6. All this analysis is backed up by applying the library case study to both methodologies. In this chapter a table is constructed with a list of factors to evaluate ORDIT and ISAC methodologies against organisational needs, user needs, business needs and socio-technical needs. This evaluation criterion will provide a set of results, which will be used in the combined methodology that will be presented in the next chapter.

7.1 Rational for Choosing Factors to the New Methodology.

The most important aspect of user-oriented design is the realisation that the users and their needs are the only reason for the existence of the project. Elegant and powerful information systems may be desirable, but if they do not satisfy the client’s needs and/or they are hard to operate, then they are rejected by their users even if they are technically sound. Literature (Eason, 1988) has proven that in order to have a system that is fit for its purpose, developers must communicate with users in their own language and users have to be involved in the development process.

In addition to user involvement, literature (Doherty, N., et al, 1997) proves that organisational issues are essential to the success of system development. In the
past, many systems designers have solved the problems of the enterprise in the way they see it without consulting or communicating with the users. This created problems for the users where the system developed is technically sound but the users could not deal with it because it did not support the human being in facilitating or improving their activities.

Hornby, P. et al, (1992) stated that 'lack of attention to organisational and human issues, it is proposed, is a major contributory factor in the underperformance of IT systems'. He also found that coverage of human and organisational issues in most of the existing system development methods is patchy in the mainstream technical methods, and although users have some participation where they can provide information, their role in the method is often unclear.

Ewuis-Mensah and Przasnyski (1994), also stated that "organisational issues are the most widespread and dominant factor" when it comes to the factors contributing to the abandonment of systems development project. Lytyinen, K. et al. (1991), stated that there is a growing realisation that it is often organisational issues that play a substantial, if not primary, role in system failure. An interesting example of this was the failure of the London Ambulance Service (LAS)’s Computer Aided Dispatch system (LAS, 1993). One of the primary criticisms of the formal inquiry into the failure of the Computer Aided Dispatch system was that the management of the London Ambulance Service had expected that the implementation of the system would automatically bring about changes to the working practices of staff, rather than explicitly reviewing and planning for its organisational impact.

The importance of the socio-technical system approach is to produce technical and social structures which have a high capacity to achieve technical and social goals and which enforce each other in the achievement of these goals. Mumford, (1983) defined the socio-technical approach as a design philosophy that produces productivity, quality, co-ordination and control; but also provides a work environment and task structure in which people can achieve personal development and satisfaction. When developing an information system, social issues (soft
systems) should be given the same amount of attention as the technical issues (hard systems). This is to support the way in which the human components of the work system are organised. London Ambulance Service (LAS, 1993) is one of the examples which proved that concentrating on technical issues only can contribute to system failure. In this example, members of the organisation reacted against the despatch system where the technical solution made it very difficult for staff to undertake their duties effectively, with the result that patients waited many hours for an ambulance. Eason (1988) and Clegg et al (1989b) identified the following factors as contributing to system failure:

- Lack of end-user participation and end-user 'ownership' of systems;
- Lack of attention to education, training and awareness;
- Lack of guiding organisational and business strategies (as opposed to technical strategies);
- Lack of organisational resources and support (concerning the 'soft' infrastructure);
- Lack of attention to organisational issues such as organisational design, organisational structure, management style; and
- Lack of attention to psychological issues such as the design of jobs, the allocation of systems tasks, and the usability of the system.

Combining the first and second of these factors and also the fourth and fifth, gives four factors which will be used in the new methodology. These four factors are

- User needs and participation,
- Organisational issues and needs,
- Business needs
- Socio-technical needs.

It is believed that in order for the new methodology to be able to solve the main problem explained in chapter one, it has to include the above four factors otherwise the methodology will produce systems that will fail.

In this chapter ORDIT and ISAC methodologies are evaluated against these four factors.
Chapter 7 A Critical Evaluation of ISAC and ORDIT Methodologies

7.2 The Four Essential Factors for the New Methodology

For the purpose of comparing the strengths and weaknesses of ORDIT and ISAC methodologies. The four main factors that were mentioned in section 7.1 (with their sub-factors) are going to be analysed represented and used in this chapter in order to guide the design and implementation of IT systems in the organisations within the new developed methodology.

7.2.1 User Needs

User needs include the following sub-factors:

- Stakeholder information, such as name, job title, department, and name of supervisor, name of subordinates, activities and resources;
- Current attitudes to IT including fears and hopes;
- User's job needs, including performing a task effectively, having the right skill level agreeable to the user, and social interaction.

7.2.2 Organisational Needs

Organisational issues needs include the following sub-factors:

- Current work pattern: e.g. agents, activities, resources, information flow, role, responsibilities and mutual obligation;
- Infrastructure support for IT, e.g. defining systems used or currently in use, computing skills/experience, and history of IT introduction;
- Problem identification
- Pre-implementation impact analysis;
- Organisational issues analysis, e.g. organisational structure, authority relations, personnel, training, politics and power.

7.2.3 Business Needs

Business needs include the following sub-factors:

- Business strategy and objectives;
- IT strategy;
- Business mission.
7.2.4 Socio-Technical Needs

Socio-technical needs include the following sub-factors:

- Conventional technical needs analysis
- Socio-technical needs analysis

7.3 The Evaluation Criteria

7.3.1 Stakeholders' Information: These are name, job, title, department, name of immediate manager, names of subordinates, activities, resources, and supervisor.

ISAC:
The ISAC methodology identifies the stakeholders involved in the organisation as some of the problem owners that have a stake in the new system, for example, Librarian, Treasurer, and Circulation Desk in Table 7.1. The process of identification is carried out in the change analysis stage through identifying the problems against the problem owners.

<table>
<thead>
<tr>
<th>Problem Owners</th>
<th>Problems</th>
<th>Activities in A-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculties</td>
<td>P5</td>
<td>C4</td>
</tr>
<tr>
<td>Library Member</td>
<td>P1, P2, P3</td>
<td>C6</td>
</tr>
<tr>
<td>Librarian</td>
<td>P1, P2, P4, P5</td>
<td>C6</td>
</tr>
<tr>
<td>Treasurer</td>
<td>P1, P4, P5</td>
<td>C4, C5, C6</td>
</tr>
<tr>
<td>Circulation Desk</td>
<td>P1, P2, P3</td>
<td>C6</td>
</tr>
</tbody>
</table>

Table 7.1: Initial matrix of problems against problem owners

ORDIT:
When the ORDIT methodology was applied to the library case study (Figure 7.1), the stakeholders outside and inside the Library organisation were identified; as was their roles within the Library organisation. At a later stage, the responsibilities that these stakeholders have towards the system within the organisation were identified as well.
Chapter 7 A Critical Evaluation of ISAC and ORDIT Methodologies

The above analysis shows that both methodologies identify stakeholders in different ways. ISAC identifies the stakeholders by listing them in a table of problem owners against the problems that they have with the current system. ORDIT, on the other hand, draws a box around the organisation to identify the stakeholders inside and outside the organisation in order to identify who is involved in the system and who is not.

The table of problems against problem owners taken from ISAC is preferred because it is easier to understand and straightforward to use.

![Figure 7.1: External and internal agencies that have an effect on the Library system](image)

7.3.2 Attitude to IT: Fears and hopes of the users.

ISAC

The methodology advocates the participation process through the first and second stages only. This process helps the problem solver to identify the user attitude through the development process. ISAC deals with user attitude by considering that different people within the same problem owners group react differently to IT, therefore the developers must make sure that an agreement has been reached before they can take any further action. Although, the ISAC methodology identifies that there are people who work against the new system and others who
work towards it, it does not mention how to deal with the users' attitudes or reactions against the new system when it occurs.

ORDIT
The ORDIT methodology advocates the participation process as well through all stages. This process as mentioned above helps the problem solver to identify user attitude through the development process. The ORDIT methodology does not mention any thing about how to deal with the user fears and hopes in all it stages.

The analysis above shows that the ISAC methodology deals only partially with the user attitude problem. However, ORDIT does not support this issue at all.

7.3.3 User job needs
This includes the following elements: "Needs to perform tasks effectively, to have the right skill level agreeable to the user, to have the right level of control of his/her work, to desirable tasks, to have job satisfaction, not to be afraid of losing his/her job because of the new system being introduced, and need for social interaction." (Woherem, 1991 and Woherem, 1994).

ISAC
The methodology does not mention how the change needs will effect the user's tasks or whether the user is going to be satisfied with the new job or not. The ISAC methodology does not mention anything about job design or job satisfaction.

ORDIT
The ORDIT methodology, on the other hand, looks at the user job needs through its role-relation model diagram (Figure 7.2). The role-relation model describes what the role holder has to do and whether he has been allocated the capability tokens needed to discharge the obligation imposed on him by his responsibility. The obligation describes the "job" and the link between responsibilities and activities executed. For example, in the library case study (Figure 7.2) the treasurer has the responsibility of providing the right amount of money for book
publishers and other issues. To fulfil his responsibility, for example, he has to perform different activities such as notifying library departments about their budget limit, make sure they do not exceed that limit, and pay publishers for new books.

The above analysis shows that ISAC has no support for this subfactor. On the other hand, ORDIT applies the socio-technical approach where human consideration such as job satisfaction, and task definition, are considered. This approach makes ORDIT a better methodology than ISAC in identifying the users' jobs needs and the information or resources needed in order to do their jobs correctly.

7.3.4 Current Work Pattern e.g.: agents, activities, resources, information flow, roles, responsibilities and mutual obligation.

ISAC

The A-graph in Figure 7.4 shows the model of the current work activities in the library system. It shows the functional relationship, the information flow among them, and the resources and material (dark lines) that are involved in those activities. However, the activity model dose not define the roles and responsibilities for the agents in the Library.
ORDIT

Using the responsibility model, ORDIT methodology models the current situation in the organisation showing the main agents and their responsibilities (Figure 7.5). The responsibility relationships of the outside agencies to the organisation are identified and the distributions of responsibilities held by agencies within the organisation are explored. The organisation is considered as a single agency and then decomposed into the agencies it encapsulates. For example, Figure 7.3, shows the responsibility of the Circulation Desk towards the Member agent and the lists of obligations and activities that have to be discharged in order to fulfil the responsibilities imposed on them.

The above analysis shows that ORDIT methodology uses the socio-technical approach, which is a better way than ISAC to describe the current work pattern in an organisation. Through the responsibility model, ORDIT is able to define the functional and structural relationships of the organisation which gives a clearer picture of the responsibilities held by agents in the organisation, their obligations, and their roles. ISAC, on the other hand, uses the activity model to identify only the functional dependency between agencies. This is considered one of the drawbacks of ISAC as explained in the previous section.

Circulation Desk Responsibility for: Adequacy of services provided for members.

Obligations:

- To provide a library pass for members in order to use the library
- To provide the borrowing service
- To provide the reservation service
- To provide the return document service
- To put on shelf returned documents and make them available for members
- To register all document activities.
Activities:

To take member information
To take document information
To make document reservation for member
To make borrowing services for member
Take returned document from member
To check returned document date
To update returned document records
To update member record

Figure 7.3: List of obligation and activities for the Circulation desk

7.3.5 Infrastructure Support for IT
Both methodologies have no support for this subfactor. Neither ISAC nor ORDIT emphasise that a study has to be done on the history of IT in the organisation in order to evaluate the current system and find out which parts of the system can be used with the new system and which parts become obsolete.

7.3.6 Problem Identification

ISAC
This is one of the strongest parts in the ISAC methodology where problems are identified and listed in a table and then analysed before modelling of the new system starts. In the change analysis stage, problems are listed in the problem table, as seen in the library case study. These problems are analysed in order to identify new problems that are mentioned by problem owners. Then the problems are reduced to a manageable numbers by eliminating problems that are:

- Too easy to solve
- Too difficult to solve
• Not relevant (e.g. Dollar fluctuation in the library case study)

ORDIT

Problems are elicited from problem owners in order to reach agreement about how the system should be rather than how it is, and to identify defects in the current system and how these might be overcome. Statements of requirements are then classified in order to identify conflicts, particularly conflict in definitions of boundary objects and organisational aspects.

The nature of the problem to be solved is identified. The development team has to get the agreement of the client on the problem to be solved so that the modelling has to focus on the chosen issue. This is done to reduce the problems identified to a manageable number, since the system model is restricted to only what is relevant to that perspective.

As stated in the analysis above, Problem Identification is one of the strongest parts in the ISAC methodology. The methodology is in agreement with the idea that too often problems are ignored by the system analyst in the rush to computerise but, you cannot solve a problem until you know what the problem is. Most of the work in the ISAC change analysis is devoted to understanding the problem. Therefore the problem identification process in ISAC is performed better than ORDIT. Although ORDIT defines the problems in the organisation, there is no sign of documenting them as part of the methodology.
7.3.7 Pre-implementation Impact Analysis

Both methodologies enable us to explore the impact of the new changes on the current system because both of them generate future alternatives in order to let us look at how the system will change in the future. However, none of the two methodologies emphasise that the impact of changes to the new system must be analysed before implementation.

7.3.8 Organisational Issues Analysis: These are authoring relation, politics, personal characteristics and organisational structure.

ISAC

ISAC methodology does not support the organisational factors

ORDIT

One of the central concepts in the ORDIT methodology is the structural relationship that describes the relationship between agents in the organisation (Figure 7.5). This relationship can describe the structure of the organisation and its
policy. This is one of the strongest parts of the responsibility model when applied to an organisation. The responsibility model is a high level abstract model, it considers all responsibilities that different agents have towards each other for a state of affairs and the rights they have to any information that needs to be used. Often at this stage of representation the responsibility that the organisation may possess as a whole is considered along with the relationship between the organisation and outside parties, which describes the policy of the organisation (Figure 7.5). In addition, the structural relationship can embody the organisational structure in terms of authorisation and power, and generate requirements in terms of information and communication structures on any IT system that installed.

To give an example, illustrated in Figure 7.5, the policy of the library is depicted through the structural relationships with the outside agencies. This policy is to provide services to the members of the library and provide the library with the required documents to be consumed.

The analysis above shows that Organisation factors analysis is one of the strongest parts of the ORDIT methodology where the structure and policy of the organisation are identified. This is done through the responsibility model, as identifying the functional and structural relationships in the organisation. The activity model used in the ISAC methodology only supports the functional relationship between agencies and ignores the structural relationship which makes it unable to support some of the essential parts of the organisational factor analysis like job satisfaction, organisational structure and the policy of the organisation.
7.3.9 Business Strategy and Objectives:

ISAC

Through its goal analysis process, ISAC tries to identify the business strategy for the organisation by identifying the business objectives that the new information system should provide for the organisation.

One of the valuable techniques in ISAC methodology is the goal trace process, where each goal is traced to see why it has not been achieved. This is done by listing all the problems, which prevent that goal from being achieved. By doing this, the change needs can be identified and these will act as an objective of the development process and the business strategy for the organisation.

ORDIT

ORDIT on the other hand involves the discussion of the future alternatives with problem owners until the desired situation (goal) is reached. However, ISAC takes it a step further by analysing those goals until the business strategy or mission for the organisation is specified.
Chapter 7 A Critical Evaluation of ISAC and ORDIT Methodologies

7.3.10 IT Strategy: Compare IT cost with business plan, To increase productivity and performance.
Neither methodology has support for this subfactor. Neither of the two methodologies supports evaluating the cost of the hardware or the software that is needed to implement the new system successfully. Neither of the two methodologies supports the alignment of IT strategy with the business goals or objectives.

7.3.11 Business Mission: Identifying the business goals and objectives as well as the desired situation for the organisation.
ISAC
In the change analysis stage, ISAC tries to investigate the desired situation for the organisation by identifying the business goals and objectives that the new information system should provide for the organisation. The business mission is the highest level goal of the business. The desired situations are listed in a table of goals against the current problems, and objectives. Then the goals are negotiated.

<table>
<thead>
<tr>
<th>Needs</th>
<th>Description</th>
<th>Problems</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Return procedure should be improved so that document is available and the service to the customers are maximised</td>
<td>P2, P3, P8, P11</td>
<td>O1, O3</td>
</tr>
<tr>
<td>N2</td>
<td>Acquisition should be coordinated so that multiple acquisitions are reduced</td>
<td>P5, P6, P7</td>
<td>O2</td>
</tr>
<tr>
<td>N3</td>
<td>Statistics should be improved</td>
<td>P4</td>
<td>O4</td>
</tr>
<tr>
<td>N4</td>
<td>The possibility of theft should be reduced</td>
<td>P10</td>
<td>O1</td>
</tr>
</tbody>
</table>

Table 7.2: Table of change needs
with problem owners to avoid contradictory situations. An example of the list of goals (desired situation) is given in Table 7.2.

ORDIT
The ORDIT methodology does not support or represent the business mission of an organisation.

7.3.12 Conventional Technical Needs Analysis: Concerns the technical functionality requirement that has to do with tasks and how it should be performed.

ISAC
ISAC uses the A-graph model in order to model the activities in the organisation. It also uses the activity model in order to analyse the functional requirements of the system and to show the processes performed on inputs to produce outputs. Therefore the ISAC methodology supports the conventional technical system.

ORDIT
ORDIT methodology does not support the conventional technical system. It only has support for the socio-technical approach.

7.3.13 Socio-Technical Needs: All social and technical aspects of the system should be brought together in order to produce a socio-technical system.

ISAC
Although ISAC methodology does not support the socio-technical approach as explained in section 7.3.12, it does have some social parts to it, which is illustrated in the process of user participation. The methodology lacks important factors of support such as organisational structure, job satisfaction, and organisational requirements.
ORDIT

The ORDIT methodology supports the socio-technical approach where the human considerations such as job satisfaction, task definition and so on, are just as important as technical considerations.

7.4 Evaluation Criteria framework

<table>
<thead>
<tr>
<th>NEEDS</th>
<th>ORDIT</th>
<th>ISAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Stakeholder info</td>
<td>Support analysis and representation</td>
<td>Support analysis and representation</td>
</tr>
<tr>
<td>2- Current attitudes to IT</td>
<td>----</td>
<td>Partially support</td>
</tr>
<tr>
<td>3- User's job needs</td>
<td>Support analysis</td>
<td>----</td>
</tr>
<tr>
<td>ORGANISATIONAL NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Current work patterns</td>
<td>Support analysis and representation</td>
<td>Support analysis and representation</td>
</tr>
<tr>
<td>2- Infrastructure support for IT</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>3- Problems identification</td>
<td>Supports analysis and representation</td>
<td>Support analysis and representation</td>
</tr>
<tr>
<td>4- Pre-implementation Impact analysis</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>5- Organisational issues analysis</td>
<td>Support analysis and representation</td>
<td>----</td>
</tr>
<tr>
<td>BUSINESS NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Business strategy and objectives</td>
<td>----</td>
<td>Recognises needs to capture</td>
</tr>
<tr>
<td>2- IT strategy</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>3- Business mission</td>
<td>----</td>
<td>Support analysis and representation</td>
</tr>
<tr>
<td>SOCIO-TECHNICAL NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Conventional technical needs analysis</td>
<td>----</td>
<td>Support analysis and representation</td>
</tr>
<tr>
<td>2-Socio-technical needs analysis</td>
<td>Support analysis and representation</td>
<td>Partially support</td>
</tr>
</tbody>
</table>

Table 7.3: Evaluation criteria framework for comparing ORDIT and ISAC against the four factors

Table 7.3 is a framework for comparing the two methods against the four factors. It shows that neither of the two methods is strong in the four major areas to which attention should be paid when constructing the new methodology. The blank boxes in the framework show that the methodology has no support for that factor.
Looking at the framework, it is realised that ORDIT allows stakeholder information analysis and user job needs and analysis, but offers no support for attitudes to IT. On the other hand, ISAC supports the stakeholder information, partially supports user attitude to IT and has no support for user job needs.

In the area of organisational needs analysis, ORDIT is the one that covers almost all the major issues that need to be considered, namely: current work patterns analysis; problem identification; and organisational needs and analysis. However, it offers no support for IT infrastructure and pre-implementation impact analysis. In the area of business needs, ORDIT has no support for any subfactor. ISAC analyses the current work patterns and has a very strong approach in identifying problems, but it offers no support for IT infrastructure analysis or pre-implementation impact analysis. In the area of business needs ISAC has the greatest coverage. It recognises the needs to capture business objectives, business strategy and business mission. ORDIT on the other hand, has no support for any of the subfactors in this area. The ISAC method offers support for representing conventional technical needs for systems to be developed. However ORDIT offers support for socio-technical needs.

7.5 ISAC Limitations and Strengths of the Four Factors.

The framework in Table 7.3 shows that the ISAC methodology can not support these sub-factors:

- User job needs
- Infrastructure support for IT
- Pre-implementation impact analysis
- Organisational issues analysis
- IT Strategy
Also from the analysis above it is shown that when the ISAC methodology is applied the following problems can be solved:

- Stakeholder information
- Partial support for attitude to IT
- Current work pattern
- Problems identification
- Business strategy and objectives
- Business mission
- Conventional technical needs analysis

7.6 ORDIT Limitations and Strengths of the Four Factors.

The framework in Table 7.3 shows that the ORDIT methodology has its limitations in the following sub-factors:

- Attitude to IT
- Infrastructure support for IT
- Pre-implementation impact analysis
- Business strategy and objectives
- Business mission
- IT Strategy

Also from the analysis above it is shown that when the ORDIT is applied the following problems can be solved:

- Stakeholders information
- User job needs
- Current work pattern
- Problem identifications
- Organisational issues analysis
- Socio-technical approach
Chapter 7 A Critical Evaluation of ISAC and ORDIT Methodologies

7.7 Why Use the Responsibility Model

An objective of the new methodology is to support most of the above factors and its sub-factors. The activity model used in ISAC methodology is insufficient to understand and resolve the problems of organisational issues, user satisfaction and organisational goals. It was decided to adopt the responsibility model for the new methodology instead of the activity model for the following reasons:

1. Using the responsibility model in the new methodology, it is possible to define the organisational structure through the structural relationship between agents. The structural relationship defines the value and nature of the relationship between agents. For example, the peer to peer relationship between two agents tell us that there is no power of one over the other and these two agents have to work together and negotiate in order to reach a decision. Figure 4.5 has an example of this relationship.

On the other hand, the activity model used in the ISAC methodology does not allow us to define the nature of the relationship between agents. For example, Figure 6.1 is insufficient for exploring the nature of the relationship between the borrowing and reservation agents.

2. Using the responsibility model it is possible to define the policy of the organisation through the structural relationships between agents. This point is analysed in section 7.3.8.

3. Using the responsibility model it is possible to identify requirements at different levels of the organisation. At the agency level which is a very high level in the organisation the requirement is to do with policies; at an individual level the requirement is to do with making work easier. At the intermediary level, which is the role level, requirements are to do with how the organisation itself functions and what obligations and capability tokens are necessary to support this.

On the other hand, the activity model used in ISAC methodology is insufficient for defining the organisational requirement at different levels. In ISAC
methodology the process of capturing the requirement ends before the design stage. Therefore the modelling techniques in the design stage do not need to capture the requirement because the process has taken place earlier.

4. Using the responsibility model helps in providing an overview of the stakeholders' role without initially going into a tremendous level of detail, this is missing from ISAC methodology. Figure 4.4 defines all the stakeholders' roles that will be affected by introducing the new system to the university library. For example, the role of the publisher is to provide new books for the library, the role of the library is to provide books to educate members and so on. The benefit of this process is to provide the analyst with an overall clearer picture so that he/she can give a better representation of what is going on at a higher level.

The A-graph illustrated in Figure 6.3 defines some of the stakeholders but does not address their roles within the organisation. It only defines the activities that each stakeholder has to perform.

7.8 Concluding Remarks

The evaluation criteria used in this chapter are based on four factors as follows: User needs and participation; organisational issues and needs; Business needs; and Socio-technical approaches.

ISAC and ORDIT methodologies have been evaluated against the four factors in order to show their strength and weaknesses. The evaluation shows that ORDIT and ISAC methodologies only address some of the four factors and neither of them addresses all the factors. The use of the responsibility modelling for the new methodology is adopted in order to address most of the organisational issues and needs. In addition, the responsibility modelling can be used as a tool for identifying and eliciting requirements when modelling an organisation.
Chapter 8 The New Methodology

8.0 Introduction

As mentioned in the previous chapters the new methodology is taken from the combination of ISAC and ORDIT methodologies. The reason for that is to build on the successful parts of these two methodologies, and develop a methodology that can offer more advantages to the process of requirement elicitation in the information system development field than either the ORDIT or ISAC methodologies. The most important advantages that should be offered are:

- Users and organisational requirements are captured and elicited
- The business problems and strategy of an organisation can be determined;
- An equal attention to both social and technical issues is given when designing an information system;
- Easy tools that can be understood by different levels of problem owners.

The method used to determine requirements should allow the problem solvers to explore possible solutions (involving both the IT system and possible organisational change) and their consequences at the same time as specifying the problem, thereby refining the understanding of the problem and developing the solution by an iterative process. (Harker, et, al. 1990).

Most of the information system development methods that adopt the socio-technical approach in their system design do not include the business strategy in their methodologies. Noble, F. (1991), stated that "socio-technical design was originally developed for limited shop floor systems, and historically did not encompass questions of business strategy". Therefore, one of the aims of the new
methodology is to incorporate these two elements (socio-technical and business strategy) in one method. Each step in the new methodology is described in more detail in the following sections.

8.1 The New Methodology

Before starting to explain the new methodology, it should be emphasised in this chapter, that despite describing the new methodology in a linear sequence, this is not necessarily how it would actually be approached. The new method supports and adopts the iterative approach (see Figure 8.1) therefore, it is possible to visit different stages at different times when modelling the IT system.

![Figure 8.1: The iterative process within the new methodology](image)
Chapter 8

The New Methodology

The iteration process in the new methodology takes place in two forms, 1) within the stage itself, and 2) between different stages.

Iteration within the stage itself

The process of iteration happens within the same stage when we have to go back and forth between the steps of the stage itself. For example, in the second stage of the methodology, the process of requirements determination requires several repeated attempts, which refine the requirements obtained by analysing them and then checking them with the users, until a satisfactory requirements specification is obtained.

Iteration between phases

The process of iteration happens between the four stages of the new methodology as shown in Figure 8.1. For example, an overlooked process may not become evident until the system modelling stage, so it is better to go back to requirements determination to redo the requirement model in the first stage. Another example is when early non-functional requirements concerning system performance in stage three are found to be impossible, and it is not until physical design or testing (in stage four) that this is realised.

First Stage

8.2 Change Analysis

8.2.1 Identify the Project Plan

The purpose of this first step is to ensure that the business mission of the organisation is identified and the problems of the current system are diagnosed correctly. This process can be accomplished by meeting with the sponsors of the development process.
8.2.1.1 Identify the business mission and problems with current systems through an initial meeting with sponsor.

The first stage of the new methodology starts by meeting with the problem owners and sponsors of the development process to identify the business mission of the organisation. During this meeting it is essential to reach an agreement among problem owners, developers and sponsors of the development process on what are the problems of the current system that prevent the business mission from being achieved.

8.2.1.2 Issue a list of problems identified

Another meeting has to be held without the sponsors in order to discuss the current system with problem owners. The purpose of this meeting is to find out if they have further problems to be identified. These problems are written down in a list of problems so that the problem owners can examine them and discuss them with the problem solver. An example of the list of problems for the professional association agency is depicted below in Table 8.1.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Workload at peak times of the year was becoming too demanding. Examination produced major peaks of work. These peaks require all of the full time staff plus temporary help.</td>
</tr>
<tr>
<td>P2</td>
<td>Membership was growing rapidly. This growing puts increasing strain on the workload.</td>
</tr>
<tr>
<td>P3</td>
<td>The number of examinations was increasing. This growing puts increasing strain on the workload.</td>
</tr>
</tbody>
</table>

Table 8.1: List of identified problems

Each of these problems in one way or another prevents the professional association from fulfilling its mission satisfactorily. Each problem in the initial list of problems is now screened to determine whether it is worth devoting a development process to solve it. There are two reasons why a problem is removed from the list. One reason is that the problem is so easy to solve that it is not worth the trouble of setting up a development project to solve it. The other reason is that
a problem is so hard to solve that a development project cannot solve it. The reason for listing these problems first and then eliminating them is that this gives a chance for the problem owners to become aware of these problems, talk about them, and reach an agreement that, at least in this development project, they should ignore them.

8.2.1.3 List groups of people or agencies that are affected by the problems identified.

Now it is possible to determine the groups of people for whom these problems exist. Representative from each of these groups should participate in the Change Analysis stage. Example of groups of problem owners is:

- Senior management
- Education secretary
- Treasurer
- Association secretary

8.2.1.4 Develop a matrix of the problems to be solved VS problem owners.

In order to get a clear understanding of the situation a matrix of problems against problem owners is developed and distributed among problem owners in order to be filled out by them. This is illustrated in the matrix of Table 8.2. This matrix is filled out by the problem owners themselves with help from the developer if required.
8.2.2 Make A Quantitative Study for Each Problem Identified.

The problems identified so far are now subject to a cause-effect analysis.

8.2.2.1 Perform a cause-effect analysis for each problem

The first thing these groups have to do is the cause-effect analysis for the problems that have been identified. This group had to have a domain specialist who had expert knowledge of the problems under study such as the end user of the required system, the sponsor, an outside specialist, and a manager, etc. The purpose of doing the problem analysis is to eliminate solution-oriented problems (people tend to explain problems in terms of their solutions) as much as possible and get to the underlying problems. This makes room for alternative solutions. Secondly, problem analysis is another way of reducing the problem list in size, in addition to the elimination of easy and hard problems. Problem analysis allows us to limit ourselves exclusively to the underlying problems. Thirdly, problem analysis helps us prepare an effective action, because the rest of the change analysis can then concentrate on the underlying causes and ignore derived problems. An example of a cause effect graph is presented in figure 8.1 which is a direct graph in which nodes represent problems and arrows point from cause to effect.
Figure 8.2: Cause-effect graph of a Professional Association
8.2.2.2 Conduct a session with problem owners to discuss and approve updated problems.

In this session the problems that are added or deleted from the list are discussed with the problems owners in order to finalise the list of problems. The problem list is updated accordingly as is depicted in the following table 8.3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Workload at peak times of the year was becoming too demanding.</td>
<td>Examination produced major peaks of work. These peaks require all of the full time staff plus temporary help.</td>
</tr>
<tr>
<td>P2</td>
<td>Membership was growing rapidly.</td>
<td>This growing puts increasing strain on the workload.</td>
</tr>
<tr>
<td>P3</td>
<td>The number of examinations was increasing.</td>
<td>This growing puts increasing strain on the workload.</td>
</tr>
<tr>
<td>P4</td>
<td>Small number of staff</td>
<td>There is not enough staff to handle the increasing amount of work.</td>
</tr>
<tr>
<td>P5</td>
<td>Budget overspent</td>
<td>To the increase of workload, large amounts of resources are overspent.</td>
</tr>
</tbody>
</table>

Table 8.3: Example of List of updated problems

8.2.2.3 Produce a matrix of the updated problems VS problem owners.

The matrix of the problems against problem owners in table 8.4 is also updated and reconstructed.
8.2.2.4 Issue a matrix of problems quantified.

A quantitative study should be made of the problems identified. The reason for this is to decide whether to invest in the solution process or not, so that the severity of the problems must be assessed first. See Table 8.5.

Quantifying the problems has three advantages. Firstly, only a quantitative characterisation of these problems can give an indication of the potential benefit to be derived from solving the problems. Secondly, only if a problem is quantified it is possible to know in the future whether and to what extent it has been solved. Thirdly, if quantification shows that a problem has only a slight impact on the business, the Sponsor may only provide a small budget available to solve it, or the problem owners may drop it from the problem list completely.

<table>
<thead>
<tr>
<th>Updated Problems</th>
<th>Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Name</td>
</tr>
<tr>
<td>P1</td>
<td>Workload at peak times of the year was becoming too demanding. Examination produces major peaks of work three times a year.</td>
</tr>
<tr>
<td>P2</td>
<td>Membership was growing rapidly. There was an estimated 10% growth per annum.</td>
</tr>
<tr>
<td>P3</td>
<td>The number of examinations was increasing. Number of examinations was increasing from three to nine a year.</td>
</tr>
<tr>
<td>P4</td>
<td>Small number of staff At least three or four new staff are needed.</td>
</tr>
<tr>
<td>P5</td>
<td>Budget overspent There are 10% increase of paperwork and other resources that can effect the budget.</td>
</tr>
</tbody>
</table>

Table 8.5: Example of quantified problems
8.2.3 Model the Current System Using the Responsibility Model

The new methodology starts modelling the current situation in the business using the responsibility model. The purpose of making a current responsibility model is to be able to discuss possible changes to the business in the next step. This model will be the platform for generating and discussing alternative solutions. The responsibility model is only developed after the problem analysis, for this will help the analyst to determine the boundaries around the system that is under development.

8.2.3.1 Identify the boundaries of the current system

Having agreed on the updated problems it is now possible to identify in more detail the boundaries of the system by identifying those stakeholders or agencies within the system of interest and also those outside the system who have affected the system. An example of the top-level responsibility model is shown in Figure 4.2 (top-level responsibility model) in chapter 4. In this model the boundaries of the system are identified in order to determine the major players or stakeholders that will effect the system. Figure 4.4 shows the structural relationships and the functional relationships between the library organisation and the external agent that affects the system. The structural relationships represent the service contract in the real world as it exists between the library system and the external agents.

8.2.3.2 Identify responsibilities, obligations and activities for each department involved.

This section shows the pool of responsibility that comes out from the contractual relationship with the external as well as internal agents and from the implementation of the organisation's policy. Each obligation is listed under the responsibility that it is related to. By keeping responsibilities and its associated obligations together, it is possible to track the policy that is implemented in the organisation. See section 4.2.2.3 in chapter 4.
8.2.3.3 Model the current system using the responsibility

In this section the current system is decomposed into its sub-components as depicted in the library system diagram in chapter 4, Figure 4.5. By decomposing the system into sub-agencies it is possible to explore and draw out the implications of how the organisation is structured. It is also possible to use these diagrams to elicit requirements by asking questions such as “What is the communication medium through which the functional relationships flow?” and “what are the responsibilities that reside within the structural relationships?”

The purpose of modelling the current system with the responsibility model is to be able to discuss possible changes to the business in the next step. The responsibility model will be the platform for generating and discussing alternative solutions. The rectangle shapes in the model are used to represent agents and agencies, while the rounded rectangles are used to depict the structural roles that a particular agent or agency may hold.

8.2.4 Identify New System Goal (Change Needs) and Requirements.

After obtaining an understanding of the problems, an identification of the problem owners, and a model of the responsibility in the organisation, it is time to list the goals of the development process. A goal is simply a desired situation and for the basis of a long-term plan to be achieved by the business. The business mission is the highest-level goal of the business. Typically, goals are formulated as desirable states to be reached at an unspecified time in the future. Goals can be made measurable by means of objectives, which are measurable states to be achieved within a specific time frame.

8.2.4.1 Conduct a session with problem owners to discuss the new goals.

The goals can be found by meeting with problem owners and asking them which situation they would like to achieve. Before investigating the possible changes to the current situation, the user goals have to be specified in order to know how to evaluate solution proposals. The specification of goals allow an understanding of
why the problems identified earlier are problems at all, and what the sponsors and problem owners want to achieve by the development process. At this stage it is necessary to specify goals in order to evaluate a solution proposal. Making a list of goals may require a lot of negotiation because different problem owners may have contradictory goals. To resolve contradictory goals, it is necessary to achieve an agreement between the problem owners. This can be done by making the goals as general as possible. Example of goals taken from the Library case study would be:

- Library members and faculties
 - All books and journals in the relevant research area should be borrowable
 - Documents should be available
- Librarian and treasurer
 - Expenses of the library should remain within budget.
 - Accurate and up-to-date statistics on library use should be available.

8.2.4.2 List the new system goals.

It is better to shorten the goal list by moving to higher level of goals in order to reach an agreement between problem owners. At this stage the business mission can be agreed with the problem owners. An example of list of goals is depicted in Table 8.6.

<table>
<thead>
<tr>
<th>Goals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Books should be maximally available</td>
</tr>
<tr>
<td>G1.1</td>
<td>Books should be returned in time</td>
</tr>
<tr>
<td>G1.2</td>
<td>The number of losses should be minimized</td>
</tr>
<tr>
<td>G2</td>
<td>Keep library expenses within budget</td>
</tr>
</tbody>
</table>

Table 8.6: List of Problem owners Goals

One of the functions of a list of goals is to be able to give the reason why the problems are problems at all. Defining the change needs will act as a goal of the development process.
8.2.4.3 For each goal find-out the problems that prevent it from being achieved.

For each goal, in order to identify the reasons why it is not achieved, a list of problems that prevent the achievement of the goal has to be issued. To do this, a matrix of problems against goals is issued in order to find clusters of related problems. This is shown in Figure 6.9.

8.2.4.4 Cluster problems into groups of similar problems that are related to the same goals.

There is no algorithm to do the clustering; the understanding of the situation gained by analysing it from different angles should suffice to make the clusters. Each cluster defines a change need that will act as a goal of the development process.

8.2.4.5 Issue a matrix of problems against goals (Change needs).

When the problem list is compared with the goals of the project team then the change needs matrix is developed. An example is shown in Table 6.9.

For each change need (project goal), a list is made of the problems that are intended to be solved and the objectives that the change should help to achieve.

8.2.5 Generate a List of Change Alternatives.

8.2.5.1 Meet with problem owners.

At this stage the project team meets again to carry forward their ideas of the change alternatives that can be implemented in the new system. All ideas are written down only, without evaluation or critique (Brainstorming). Evaluation will be done in the next step.
8.2.5.2 Evaluate change needs according to problem owners point view.

During the change alternatives process different alternatives of changing flows and/or responsibilities have to be investigated. The responsibility diagrams are used to suggest alternative ways of structuring relationships and communication procedures. Can the system be restructured in another way? Can the responsibilities be performed in another manner? The answer to these questions can be found after modelling the new system.

8.2.5.3 Issue a matrix of change alternatives.

Alternatives that are suggested in the previous step are written down in a table. These alternatives might involve changes to the existing system, an example of these alternatives is depicted in Table 8.7.

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Reduce theft by removing all documents from the reach of members</td>
</tr>
<tr>
<td>A2</td>
<td>Reduce theft by making all books with an indelible and invisible magnetic marker and place ports with sensors at library entries.</td>
</tr>
<tr>
<td>A3</td>
<td>Improve supervision on document return procedures by reducing the number of entries/exit to the library department to one, and by organising a strict schedule under which there will always be one library functionary at the entry/exit desk.</td>
</tr>
<tr>
<td>A4</td>
<td>Facilitate the production of use statistics by implementing an automated information system.</td>
</tr>
<tr>
<td>A5</td>
<td>Facilitate automatic reporting on members who extend their borrowing period beyond allowable limits by implementing an automated information system.</td>
</tr>
</tbody>
</table>

Table 8.7: A matrix of change alternatives

The alternatives are not mutually exclusive, but some, such as the first two, are. Some of the above alternatives involve changes to the information system of the library. Other alternatives take measures not involving the automated information system.
Second Stage

8.3 System Modelling.

8.3.1 Choose the Best Alternative Package for the Organisation.

At this step the sponsor is presented with a report on the evaluation of alternatives and then chooses one of them.

8.3.1.1 Present alternative packages of related changes to be investigated.

Now it is time to make a package of one or more change alternatives that are worth investigating. In order to investigate a package it has to be modelled using the responsibility model. This allows discussion of the package and comparison with the current situation.

8.3.1.2 Evaluate each package solution.

At this stage an investigation has to be carried out of the consequences on each package in order to know if any new problems are introduced by each package, and for whom. To produce this, for each package, a matrix of problems against problem owners has to be constructed showing which problems are solved and which are introduced. An example of the matrix of problems vs problem owners to find out which problems are solved for each package is presented in Table 6.13 in chapter 6.

8.3.1.3 Select the best package.

The sponsor is presented with a report on the evaluation of alternatives and then chooses one of them. The developer may suggest a choice, but it is important that the sponsor authorises this choice because it significantly affects the use of resources in the rest of the development process.
8.3.1.4 Pre-implementation impact analysis.

After selecting the best package for the organisation, the impact of the package has to be evaluated. A pre-implementation impact analysis has to be made from the client system analyst in order to evaluate the impact of the new changes on the organisation. Only if the changes are accepted then the methodology continues to the following step. However, if the changes are refused because of cost or too much disruption to the current system, then the system analyst has to go back and alter the original change needs to a more feasible one. This process is repeated until the problem owners, sponsor and stakeholders accept a solution package.

8.3.2 Model the Required System Using the Responsibility Model.

8.3.2.1 Decompose the responsibility model in the change analysis stage into obligations using the role model.

At this stage the desired information system is modelled and decomposed in order to show the restructuring and realignment that would occur if the system were implemented. Several key organisational responsibilities would have to be reassigned and realigned. An example of the new library proposed system is depicted in Figure 4.6.

8.3.2.2 Discuss the new assignment of responsibilities resulting from the proposed system.

At this stage it is recommended to list all the new assigned responsibilities so that the problem owners to study them and give their comments about them.
Third Stage:

8.4 Socio-Technical Design.

Up to this stage the new methodology has been concentrated on producing a specification of requirements for the required information system.

The third stage of the methodology deals with the design of the technical solutions to the new system and how it can be fitted into those requirement specifications. The main concern of this stage is about how the users are going to communicate with computers and which dialog are they going to use in order to interact with IT.

8.4.1 Define IT infrastructure (Server, Workstation, Network, and Software).

At this stage the history of the existing IT is studied by the problem solver and the problem owners in order to evaluate the current systems’ hardware and software used in the organisation. This process is done in order to find out which parts of the old system can support the new system and which parts have become obsolete. This process can benefit in the next step where the supportive parts to the new system are considered in the IT strategy. In addition, the users’ computer skills are evaluated in order to know which users have enough skills to operate the new system and who needs to be trained.

8.4.2 Define the IT Strategy.

At this stage an investigation has to be carried out to find out the hardware and software that best achieve the organisation’s business goals. For example, what kind of workstation is needed for the new system and what type of network the organisation needs in order to fulfil its mission? In addition, the type of user training needs to be determined as well. A meeting has to be conducted between the IT manager, senior manager and the finance manager as well as the problem solver in order to measure the cost of the hardware and software that will be needed for the new system. The benefit from this meeting is to be able to align the
IT equipment costs with the organisations’ business plan or strategy. The involvement of the senior manager is very critical at this stage in order to utilise the potential of IT throughout the organisation.

8.4.3 Define the System Structure (Object, Attributes, Methods, and Validation).

At this step the screen design and report layouts are done according to the users' requirements. The advantage of spending a long time in the process of requirement definition in the first stage comes to this part where it is possible to design the best information system, which can implement those requirements. After developing the required system now it is time to set up the acceptance criteria which should cover all aspect of design.

8.4.4 Development.

8.4.4.1 Software Coding.

Build different components of the product taking in consideration the future reusability and maintainability.

8.4.4.2 Quality Assurance.

Perform a thorough system test including integration testing and debugging of each component that will be executed.
Fourth Stage:

8.5 Implementation.

The fourth stage in the methodology covers the implementation process of the new system in the organisation. These are end user training, first parallel run, second parallel run, technical training, and documentation. This process requires an ongoing relationship between problem owners, problem solver and system owners.

8.5.1 Provide End User Training

During this phase the customer will be trained on the different components of the product.

8.5.2 First Parallel Run

Data shall be processed for one month, more or less, depending on the system, such that one complete cycle of the organisation's activities can take place. All reports will be issued and compared with the list of user requirements. Then preliminary acceptance has to be agreed by the customer.

8.5.3 Second Parallel Run

The customer should have enough time to test all the functions and features of the product.

If the above test is conducted and results conform with the declared functions and features in the Analysis and Design Document then the software is accepted by the customer and they will therefore sign for software acceptance.
8.5.4 Technical Training

This step will provide technical training on the development tool, which has been used to develop the application.

8.5.5 Documentation

User documentation will be provided which explains in detail, in a user-friendly way, the different functions and features of the product.

Once the IT application has been developed to fulfil the business needs then it must be successfully implemented within the organisation.

8.6 Concluding Remarks

A new methodology has been developed from combining ISAC and ORDIT methodologies, and by adding more subfactors to it. The new methodology comprises four stages. In the first stage, a lot of attention is paid to the problem definition, and therefore it is possible to consider it as a suitable method for solving ill-defined problem situations and requirement elicitation.

In the second stage, the enterprise modelling language is used in order to define the organisational issues that are missing from ISAC methodology, such as organisational structure, organisational policy, and job satisfaction.

The purpose of identifying the user needs and the organisation needs at the beginning of the new methodology is to have an information system that is compatible with the needs of the organisation and the needs of the users who are going to use it.

The third stage of the methodology deals with the design of the technical part of the new system and how it can be fitted into the working lives of the staff of the organisation, which is a key factor to the socio-technical system. The main concern at this stage is about how the users are going to communicate with computers, which dialogue are they going to use in order to interact with the computers. This process is very important to be able to design the screen and
report layouts according to the users' requirements identified in the first stage. The advantage of spending a long time on the process of requirement definition in the first stage comes to this part where it is possible to design the best information system, which can implement those requirements. After developing the required system it is then time to set up the acceptance criteria which should cover all aspects of design.

The fourth stage in the methodology covers the implementation process of the new system in the organisation. These are end user training, first parallel run, second parallel run, technical training, and documentation. This process requires an on-going relationship between problem owners, problem solver and system owners.

Finally, each stage of the methodology has input and an output, which can be an input to the following stage. Some of the stages have inputs from variable stages, for example; the third stage uses information that comes out from both the first stage and the second stage.

A parallel run is then required between the old system and the new system in order to validate the list of user requirements. User documentation will also be provided to explain in detail, in a user-friendly way, the different function of the new system.
Chapter 9 Applying the New Methodology to the Bank Case Study

9.0 Introduction

The Bank of Bahrain and Kuwait (BBK) was established in 1971 in the state of Bahrain in order to support the banking system in Bahrain. In 1995 the bank opened its second branch in India in the city of Hyderabad. The following year in 1996 the bank opened its third branch in the state of Kuwait. The Kuwaiti branch was opened as a small branch but then it was expanded in order to provide extra services to its customers. This was due to the large investment made by the Kuwaiti government as a second partner.

Due to this expansion, the bank's information technology and strategic planning committee decided to replace BBK's core banking system in order to compete with the leading banks in the region and to serve the bank well into the twenty first century.

The bank consists of four divisions, each division has its own department. These divisions are namely, Central Processing Division, Information Technology Division, Human Resources Division and Risk Management and Financial Control Division.

The Human Resources Division (HRD) is the only division that will be studied and modelled in this chapter. The purpose of this study is to help the administration of the Human Resources Division to get the most appropriate system for the division. The role of the new methodology is to capture the user
and organisational requirements for the proposed system, identify the current problems and suggest solutions for the future.

The Human Resources Division (HRD) provides a wide range of services to the bank of Bahrain and Kuwait. As depicted in Figure 9.1, the division consists of four departments namely, Recruitment, Training and Career Development, Personnel and Compensation. Each department has its own staff, which carries out many transactions as a daily routine. The Recruitment department consists of three sections namely, Security, Dispatch and Archive.

Currently, the Personnel and Training and Career development departments have small computer network environments with PCs connected to a small server. The Recruitment department is manually maintaining all the application forms of the employees. A dedicated archive room is also used for the storing and retrieval of documents on a daily basis. They also use a stand alone PC for writing and printing letters. The Compensation department uses ready made software packages such as Microsoft Office in order to keep track of the insurance claims that they have to pay on behalf of insurance companies.

Finally the problems with the existing system in BBK are described in the list of problems in Table 9.1 and the step by step application of the new methodology to the HRD division's system is described in the next sections.
Chapter 9 Applying the new Methodology to the Bank case Study

Figure 9.1: HRD organisation chart
9.1 Change Analysis

9.1.1 Identify the Project Plan

9.1.1.1 Identify the business mission and problems with current systems by meeting with sponsor

The first stage of the new methodology was started by meeting with the sponsors of the development process to identify the business mission of the BBK organisation and the problems of the current system that prevent this mission from being achieved. The problems identified at this stage were as follows:

- The information provided from some departments was not up-to-date.
- Due to lack of communication between divisions, the bank is losing a lot of money. For example, lack of communication between the compensation and the personnel dept helped in creating the problem of failing to stop payment to the employees who should no longer receive the dependent compensation.
- Department reports have no standard format, each department has its own format.
- It takes a lot of time to find the right candidates for a specific position.

These problems were considered and written down in order to be taken to the next meeting.

At this meeting the current system is discussed with the problem owners of HRD in more detail in order to discover whether they had any further problems. These extra problems are written down in a list of problems so that the problem owners can see them and discuss them with the problem solver. The list of problems identified is given in Table 9.1.

9.1.1.2 Issue a list of problems identified

Each of these problems in one way or another prevents the bank from fulfilling its mission satisfactorily. Each problem in the initial list of problems is now screened to determine whether it is worth devoting a development process to solve it.
Problems Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Problems</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Redundancy of Information</td>
<td>Multiple copies of the same employee documents are available in different departments.</td>
</tr>
<tr>
<td>2</td>
<td>Inconsistency of Data</td>
<td>Some of the information provided by each department is not up to date and not accurate.</td>
</tr>
<tr>
<td>3</td>
<td>Each employee file has a huge number of documents</td>
<td>Employee records file contains a huge number of documents that represent the history of each employee.</td>
</tr>
<tr>
<td>4</td>
<td>No Security</td>
<td>Due to the availability of the same documents in different departments, some confidential information is easily accessed.</td>
</tr>
<tr>
<td>5</td>
<td>Financial Loss</td>
<td>Due to lack of communication, insurance cover is permitted for ineligible employee's dependants.</td>
</tr>
<tr>
<td>6</td>
<td>Inconsistent statistical and Managerial Reports</td>
<td>As each department has its own single system, each department produces its own statistical report format and presentation style which is different from the others.</td>
</tr>
<tr>
<td>7</td>
<td>Some of the candidates starting a new job don't begin on the starting day</td>
<td>When candidates don't come on the first day the department has to make other arrangements for the starting day and the contract has to be adjusted.</td>
</tr>
<tr>
<td>8</td>
<td>Undetailed insurance claim reports</td>
<td>When insurance companies send their claims reports to the bank they contain all the bank employee information without specifying which claim belongs to which employee.</td>
</tr>
</tbody>
</table>

Table 9.1: List of problems identified

With problems P7 and P8 it is seen that these problems come from external actors such as applicants and Insurance Companies which cannot be controlled or solved by the bank system. The analysis of the problems shows that it is better to remove problems P7 and P8 from the list. There are two reasons why a problem is removed from the list. One reason is that the problem is easy enough to solve that
Chapter 9 Applying the new Methodology to the Bank case Study

it is not worth the trouble of setting up a development project to solve it. The other reason is that a problem is hard enough to solve that a development project cannot solve it.

Both problems P7 and P8 have a mixture of these two reasons. In both cases the external agencies can be asked to improve their procedures to correct the problem. This request is an easy step to take, but if the agencies fail to comply any further action by the bank the problem becomes very difficult to solve.

9.1.1.3 List groups of people or agencies that are affected by the problems identified.

After analysing the problems to be solved, it is possible to determine the boundaries of these problems. This process can be done by identifying the groups of people that are affected by these problems. These groups are:

- Personnel
- Compensation
- Finance
- Training and career development
- Recruitment

9.1.1.4 Develop a matrix of the problems to be solved VS problem owners.

In this step, an empty matrix of problems identified against problem owners is developed and distributed among problem owners in order to be filled out by them. Each department in the human resources division was asked to write down the problems that have an effect on it. This is presented in the matrix of Table 9.2. This matrix was filled out by the problem owners themselves, with help from the developer when required.

After the problems were discussed and the people affected by these problems were identified in HR division, it was realised that there were six groups of problem
owners, who can be correlated with the problems that have been previously identified. Therefore the following matrix was developed:

<table>
<thead>
<tr>
<th>Problems</th>
<th>Problem Owners</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, P2, P3, P4, P5, P6</td>
<td>Personnel</td>
</tr>
<tr>
<td>P2, P3, P5, P6</td>
<td>Compensation</td>
</tr>
<tr>
<td>P5</td>
<td>Financial</td>
</tr>
<tr>
<td>P1, P2, P3, P6</td>
<td>Training and Career Development</td>
</tr>
<tr>
<td>P1, P2, P3, P4, P6</td>
<td>Recruitment</td>
</tr>
</tbody>
</table>

Table 9.2: Problems against problem owners in the Bank of Bahrain and Kuwait

After identifying the groups of problem owners in the bank organisation, a representative from each group was chosen to help in the development process.

It has to be noted here that the process of identifying the problem owners involved confronting problems with some of the users who are resisting change to the new system. This problem was resolved by identifying these people then conducting a meeting session with them and the top management to explain what was being done, and that the task was not to make their job redundant but to help them practice their job effectively. Incentives were also given by top management to the users who could help in the development process. Some of the intensive that were included:

- Users who help in the development process will have a good report, which can help in their next promotion.
• BBK offered some valuable prizes for users who are heavily involved in the developing process.

The project group contains the following members.
• John Johnson IT department
• Hussain Bustami Recruitment department
• Personnel Asst. Manager Essa Hassan Personnel department
• Training Assit. Manager Ahmad Mustafa Training department
• Compensation Assist Manager Shaikha Taleb Compensation department.
• Financial Assist Manager Atef Hameed Financial department.

9.1.2 Make a Quantitative Study for Each Problem Identified.

9.1.2.1 Perform a cause-effect analysis for each problem

The first thing this group had to do was the cause-effect analysis for the problems identified. The result of the problem analysis is represented in a cause-effect graph, Figure 9.2, which is a directed graph in which nodes represent problems and arrows point from cause to effect.
During the cause effect analysis for the bank, a number of important problems were discovered. One cause of the employee starting date delay problem is that
Chapter 9 Applying the new Methodology to the Bank case Study

the departments within the Human Resources Division have no coordination between them. This problem, in turn, is traced back to the lack of communication problem between departments in HRD. The problem of no coordination is added to the problem list.

Another problem caused by the lack of coordination is the problem of compensation cover. The rule of compensation for an employee’s dependent thus: When the dependant reaches a certain age the dependant cover should stop. The Compensation department complains that the Personnel department does not inform them when the employee’s dependants reach the age that the compensation cover should stop. This problem causes the bank to spend more money than it should for compensation cover.

The redundancy of information caused by the multiple copies of the same employee document being kept in different departments causes another problem, which is the increasing amount of paper consumption in the bank, which in turn affects the overspent budget.

The problem of statistical and managerial reports was identified in the discussion with the management. Their complaint was that each department sends reports in different formats, they would like to see a consistent form of report for all departments. This problem also increases the paper consumption. Every time the manager does not like the format of the report he has to send it back to be reformatted.

Finally, the problem of information redundancy and the problem of lack of coordination cause the problem of data inconsistency. The multiple copies of employee documents in different departments and the lack of coordination mean that some employee documentation has inconsistent information. For example, if an employee position has changed without the employee file being updated within a certain department then this information will be different from other departments.
9.1.2.2 Conduct a session with problem owners to discuss and approve updated problems.

In this session the problems that are added or deleted from the list are discussed with the problems owners in order to finalise the list of problems. The problem list was updated accordingly as is depicted in Table 9.3.

<table>
<thead>
<tr>
<th>No.</th>
<th>NAME</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Redundancy of information</td>
<td>Duplicate documents of the same employee are available in different departments.</td>
</tr>
<tr>
<td>P2</td>
<td>Inconsistency of data</td>
<td>Some of the information provided from departments is not updated and not accurate.</td>
</tr>
<tr>
<td>P3</td>
<td>No security</td>
<td>At the end of every month the Financial department send the salary sheet to the accountant in order to pay the salary to the bank employee. This sheet exposes to the accountant employee all financial information about the other employee records in the bank.</td>
</tr>
<tr>
<td>P4</td>
<td>Each employee file has a huge number of documents</td>
<td>Employee files contain a huge number of documents that represent the history of each employee.</td>
</tr>
<tr>
<td>P5</td>
<td>Financial loss</td>
<td>Due to lack of communication the insurance cover is permitted for ineligible employees' dependants.</td>
</tr>
<tr>
<td>P6</td>
<td>Inconsistent statistical and managerial reports</td>
<td>Each department has its own single system. Each department produces its own statistical report format and presentation style which differs from the others.</td>
</tr>
<tr>
<td>P7</td>
<td>Employee starting date delay</td>
<td>When a new candidate is employed, some of the departments do not inform the personnel on the day the candidate commences his/her work.</td>
</tr>
<tr>
<td>P8</td>
<td>Huge consumption of paper</td>
<td>A lot of paper is used everyday due to the problem of information redundancy and the fact that there are no standard reports.</td>
</tr>
<tr>
<td>P9</td>
<td>Lack of Coordination</td>
<td>No coordination between HRD departments</td>
</tr>
</tbody>
</table>

Table 9.3: List of updated problems for the Bank of Bahrain and Kuwait
9.1.2.3 Produce a matrix of the updated problems VS problem owners.

The matrix of the problems against problem owners was also updated as can be seen in the Table 9.4:

<table>
<thead>
<tr>
<th>Problems</th>
<th>Problem Owners</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, P2, P3, P4, P6, P7, P9</td>
<td>Personnel</td>
</tr>
<tr>
<td>P2, P3, P5, P6, P9</td>
<td>Compensation</td>
</tr>
<tr>
<td>P5, P8, P3, P9</td>
<td>Financial</td>
</tr>
<tr>
<td>P1, P2, P3, P6, P9</td>
<td>Training and Career Development</td>
</tr>
<tr>
<td>P1, P2, P3, P4, P6, P9</td>
<td>Recruitment</td>
</tr>
</tbody>
</table>

Table 9.4: Updated problem against problem owners in BBK.
9.1.2.4 Issue a matrix of problems quantified.

In addition to doing a cause-effective analysis, a quantitative study should be made to the problems in order to decide whether to invest in the solution process or not.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Redundancy of information</td>
<td>At least six copies of the same employee document (papers of contract) are available in the following departments: - Recruitment - Personnel - Training and career development - Compensation - Employees own department - Financial</td>
</tr>
<tr>
<td>P2 Inconsistency of data</td>
<td>- Number of errors could not be determined because there was no record kept for that purpose.</td>
</tr>
<tr>
<td>P3 Each employee file has a huge number of document</td>
<td>Each Employee has an average of 15 static documents (Passport, Civil ID, Driving License, Residency, Marital Status, Dependents) and 50 dynamic documents per year such as: - Leave - Memos - Training certificates - Promotion</td>
</tr>
<tr>
<td>P4 No security</td>
<td>Approximately 24 times a year the bank employees complain that their personal information is not secure enough.</td>
</tr>
<tr>
<td>P5 Financial loss</td>
<td>75% of the bank employee are married. 10% of this category should not renew the scholarship of their children because their age is above the predefined scholarship schema.</td>
</tr>
<tr>
<td>P6 Inconsistent statistical and managerial reports</td>
<td>Some managerial and statistical reports are returned for corrections four or five times from some departments.</td>
</tr>
<tr>
<td>P7 Employee starting date delay</td>
<td>This happens almost 3 times a year.</td>
</tr>
<tr>
<td>P8 A huge consumption of paper</td>
<td>5-10 packets of 500-sheets are consumed every day.</td>
</tr>
<tr>
<td>P9 Lack of Coordination</td>
<td>5-6 times a month the employees of HRD complains that there are no coordination between them.</td>
</tr>
</tbody>
</table>

Table 9.5: Quantified problems matrix
In the bank project, it was found that not all problems could be quantified as is depicted in Table 9.5. Problems P2 was the only one that could not be quantified. The management decided to invest in all the problems, and the problem of coordination took the highest rank in the list.

9.1.3 Model the Current System Using the Responsibility Model

9.1.3.1 Identify the boundaries of the current system

The top-level responsibility model is made after the problems are analysed to help the analyst draw the boundaries around the systems under development and distinguish relevant systems.

![Top responsibility model of BBK system](image)

Figure 9.3: Top responsibility model of BBK system

In the diagram Figure 9.3 (top-level responsibility model) the boundaries of the system were identified for the bank system to determine the major players or stakeholders that affect the system. This can be seen in the diagram above where...
Chapter 9 Applying the new Methodology to the Bank case Study

the major players are: The bank system, Advertising agencies, The Applicant, Job agencies, Insurance companies, Schools, Market, and Training Institutes. Figure 9.3 shows the structural relationships and the functional relationships between the bank system and the external agents that affect the system. The structural relationships represent the service contract in the real world as it exists between the bank system and the external agents. On the other hand, the functional relationships depicted in the diagram as thin lines show the nature of the structural relationships between the bank and the external agents. For example, the bank can request the service from an advertisement agency and the advertising agency has the responsibility of providing that service to the bank. In the same way the bank can request candidates for a certain job vacancy and the applicant has the responsibility of supplying the documents requested.

The function of agents can be seen through the functional relationships between them. These relationships embody the policy of the bank, for example, in the relationship between the job agencies and the bank, the service provider is affected by the server and the request service is affected by the client agent.

9.1.3.2 Identify responsibilities, obligations and activities for each department involved.

This section shows the pool of responsibility that comes out from the contractual relationship with external as well as internal agents and from the implementation of the organisation’s policy. Each obligation is listed under the responsibility that it is related to. By keeping responsibilities and its associated obligations together, it is possible to track the policy that is implemented in the Bank of Bahrain and Kuwait for the HRD.
Chapter 9 Applying the new Methodology to the Bank case Study

Recruitment Department

A - Responsibilities
The responsibility of the Recruitment department is to manage the manpower plans and the organisational requirements for additional staff.

B - Obligations
1. Carry out salary assessment surveys
2. Advertise for vacant positions in the bank.
3. Liases with recruitment agencies for the employment of specialised positions that cannot be filled from the local market.
4. Manage files of applicants.
5. Make an interview with suitable candidates
6. Negotiate salary based on the organisation policy.
7. Confirm applicants' qualifications and medical status.

C - Activities
1. **Carry out a salary assessment survey**
 - Communicate with Compensation department on salary assessment.
 - Investigate the local market to assess the salaries for required positions.
 - Verify qualifications required for each position.
2. **Advertise vacant positions in the bank.**
 - Contact departments for the qualifications required for each vacant position
 - Place advertisements in the local media
 - Send required job information to recruitment
3. **Liases with recruitment agencies**
 - Contact advertisement agencies in international media.
 - Send company advertisement to international media agencies.
 - Contact head hunting companies
4. **Maintain files of applicants.**
 - Collect application forms from candidates.
Chapter 9 Applying the new Methodology to the Bank case Study

- Categorise applicants’ application forms.
- Send candidates’ application forms to departments.

5. **Make an interview with chosen applicants**
 - Collect application forms from departments
 - Keep unselected candidates’ forms in a filling system.
 - Inform selected candidates about interview time
 - Inform the concerned department about the interview time
 - Meet with candidate and representative from the concerned dept.
 - Meet with department representative to confirm selected candidates

6. **Negotiate salaries with chosen applicant based on the organisation policy.**
 - Request organisation policy for employment procedure.
 - Meet with applicant to confirm his/her qualifications and medical status.
 - Negotiate salary with applicant.
 - Agree with applicant on final salary.

7. **Accept chosen applicants’ and sign contract.**
 - Sign employee contracts and obtain signature from applicant
 - Set with chosen applicant the starting date.

Personnel

The purpose of this department is to manage the personal information of the employees in BBK. The personnel module is the starting point of the employee data, since the employee data must be entered first before any other transaction.

A - Responsibility

Managing and directing the personnel function and providing proactive support to line management in order to achieve the corporation’s goals efficiently and cost effectively.

B - Obligations

- Obtaining approval of senior executive management on benefits plan.
Chapter 9 Applying the new Methodology to the Bank case Study

- Controlling passports, visas and residency operation for the bank’s staff.
- Monitoring grievance and penalty action for staff.
- Relating effectively to the Financial Division.

C – Activities

1. Personnel policies
 - Define all types of termination (Resignation, Lay off)
 - Define all type of leaves (Annual Leave without Pay, Annual Leave with Pay, Sick Leave, Maternity Leave, Pilgrimage Leave)
 - Define Holidays, Shifts and Office Hours
 - Confer with other divisions in the bank on personnel policies and procedure.
 - Get approval from executive management on all staff benefits.

2. Legal documents
 - Monitor and check expiry of and renew visas/work permits of the employees and their dependants.
 - Create a good relationship with government authorities to facilitate official work of the bank as required.

3. Monitor employee activities
 - Keep regular time attendance sheets for each employee
 - Keep track of employee penalties, deduction and warning memos.

4. Relate effectively to the financial division
 - Send all employee promotion reports to financial division.
 - Send all employee penalty reports to financial division.
The Training and Career Development Department

A-Responsibility
Assessing staff development and training needs in coordination with various organisational units and participating in organising and administration in-house training courses.

B-Obligations

- Manage the training function to ensure staff are developed to meet the increasing challenge and demand of an expanding business.
- Organise and administrate in-house courses and arrange for external courses identified by line management.
- Assess each course and recommend requirement on content, presentation and timetable.
- Monitor the selection, progress and final assessment of course members.
- Establish an effective relationship with outside training agencies and related organisations.

C-Activities

1. Manage the training function to ensure staff are developed to meet the increasing challenge and demand of an expanding business.

- Confer with other departments to analyse training needs.
- Develop individual training plans to meet recognised development needs.
- Prepare and schedule the training programs.
- Check employee files to find out which employee needs to take which training course.
- Check overall training budget to determine the bank's training program.
- Prepare monthly/quarterly training statistics for executive management review.
Chapter 9 Applying the new Methodology to the Bank case Study

2. Organise and administrate in-house courses and arrange for external courses identified by line management.
 - Check if training courses can be given inside the bank or not.
 - Coordinate with outside training agencies in order to provide the required course.
 - Make sure all training courses offered are within the organisation plan.
 - Set the appropriate time for giving the training courses according to the employee schedule.
 - Provide suitable software and hardware that will be used in the training courses.
 - Select training staff from inside or outside the bank that are most suitable for teaching the required courses.

3. Assesses each course and recommend requirement on content, presentation and timetable.
 - Prepare an assessment sheet for each training course.
 - Distribute assessment sheets to all trainees on each training course.
 - Evaluate trainee assessments and make recommendations to be taken into consideration for future courses.

4. Monitor the selection, progress and final assessment of course members.
 - Obtain candidates names from all departments
 - Check candidates qualification files
 - Select from candidates who should attend the offered training courses.
 - Send letter of confirmation to inform selected candidates
 - Assess the performance of all candidates who attend the offered courses.

5. Establish an effective relationship with outside training and related agencies.
 - Send greetings cards from time to time to outside training
organisations.

- Contact outside training organisations to determine courses offered.
- Send a list of future training courses required to outside training organisations.

Compensation department

A-Responsibility

Supervise and control various compensation operations, staff benefit activities and salary administration including approval of payroll and any other staff financial settlements and administration of staff insurance policies.

B-Obligations

- Direct and control daily activities related to staff benefits and compensation transactions.
- Administrate salary scales and recommend modification to salary scales and annual merit increments as appropriate.
- Administrate performance appraisal and salary review for staff and trainees including the implementation of merit. Increase guidelines and trainee salary progression grid.
- Administrate staff insurance policies including processing any claim according to terms and conditions of policy wordings and the approving of payment of premiums and final settlements with underwriters.

C-Activities

- Direct and control daily activities related to staff benefits and compensation transactions.
- Receive notifications of a change of employee status from other departments.
Chapter 9 Applying the new Methodology to the Bank case Study

- Update staff benefits according to employee status.
- Calculate employee benefits from leave compensation, ticket compensation, new child compensation, etc.
- Administrate salary scales and recommend modification of salary scales and annual merit increment as appropriate.
- Check the salary scale with the outside market on a yearly basis for each required position in the bank.
- Send the recommended modification to salary scales to the Recruitment department.
- Study the salary scales of the employees who take training courses in the bank.
- Recommend an increase of salary for employees who take valuable training courses.
- Administrate staff insurance policies including processing any claim according to the terms and conditions of the policy wordings and approving payment of premiums and final settlements with the underwriters.
- Check all insurance claims sent to the Bank.
- Check which insurance claims belong to each employee.
- Check terms and conditions before payment
- Approve payment of premiums.
- Make sure that payments to insurance companies are provided on time.
- Review and approve regular monthly reports generated for the Information System unit, accounting unit and compensation as well as reviewing the benefit statistical report and passes for authorisation.
- Issue a statistical monthly report on all compensation transactions with copies sent to Accountants, management approval, Information System Department.
9.1.3.3 Model the current system using the responsibility model

This involves decomposing the bank system into its subcomponents as depicted in the diagram Figure 9.4. By decomposing the bank system into sub-agencies it was possible to explore and draw out the implications of how the organisation was structured. It was also possible to use these diagrams to elicit requirements by asking questions such as "What is the communication medium through which the functional relationships flow?" and "what are the responsibilities that reside within the structural relationships?"

The purpose of making a current responsibility model was to be able to discuss possible changes to the HRD system in the next step. The responsibility model will be the platform for generating and discussing alternative solutions. In Figure 9.4, the rectangles are used to represent agents and agencies, while the rounded rectangles are used to depict the structural roles that a particular agent or agency may hold.
Diagram Figure 9.4 concentrates on the structural aspects of the organisation that each agent is responsible for.

Figure 9.4: The Existing system for the human resources division
Chapter 9 Applying the new Methodology to the Bank case Study

Recruitment Agent

The process of recruitment in the Bank system starts when one of the departments sends a request to fulfil a vacant position. This context is depicted in the relationship Request-Provide between other divisions and the Recruitment department in the human resources division. The diagram shows the Recruitment department has a responsibility to fulfil towards other departments. This responsibility is to look for suitable candidates for any vacant position in the bank. After the Recruitment department obtains the other divisions’ requirements it has the responsibility to contact the advertising agencies and job agencies, as does the new applicant in order to look for the suitable candidates for the new position. This is described in the Request-Provide, Client-Server relationships between the Applicant, Advertising agencies and Job agencies and the Bank system. After the Recruitment department receives all application forms it starts to categorise them as to who is most suitable for the job. It then sends the information on the suitable candidates to the associated department. This is again described by the Provide-Request relationship. When the requested department selects the candidate, the Recruitment department has the responsibility of interviewing the applicants, negotiating the salary, and preparing the contract to send to the Personnel department.

If the Recruitment agent in the Bank system fails to properly fulfil its responsibility towards the applicants, there is a set of formal steps that may be invoked to resolve the situation. The Provide-Request structural relationship between recruitment and Applicant agencies depicts this.

Compensation Department

The Compensation department controls the staff benefit activities and salary administration. To be effective the Compensation department and the Recruitment department has to work as a team in order to set the right salary for the new candidate in the process of salary negotiation. The Peer-Peer relationship, defines this process of coordination. This is a yearly process where the Compensation department has to check the scale of salaries in the market and
Chapter 9 Applying the new Methodology to the Bank case Study

provide the Recruitment department with the updated information. The responsibility upon the Compensation department is illustrated in the relationships: Request–Provide relationship between the bank and the outside market to obtain the salary scale for all candidates applying to the bank. The Compensation department will also check to see if the candidate has some authentication token attached to be eligible for insurance cover and school services, this process is defined in the Request–Provide relationship. After all the candidates' information has been obtained, the Compensation department will send the information back to the Recruitment department so they can prepare the final contract and send it to the Personnel department. This is illustrated in the Provide–Consume relationship between the compensation and Recruitment departments.

Personnel Department

After accepting the candidate in the bank, the personnel agent obtains the employee contract from the Recruitment department to keep in their database. The context of this activity is described in the Provide-Consume relationship. In addition, the Personnel department has the responsibility of providing the starting date for the new employee (depending on the starting date written on the contract) to the financial division in order to start his/her salary, this is defined in the Provide-Consume relationship. The Personnel department has the responsibility of holding all employee history data in the bank organisation. This is depicted in the relationship Supplier-Accept between other divisions and Personnel department.

Training and Development Department

This department is responsible for assessing staff development training needs with various organisational units. For the training and development department to prepare the training plan it has to request employee information from all bank divisions and generate requirements on whom needs to be trained. This is depicted in the Provide-Consume relationship between the Training and Developments department and other divisions. The training plan will be distributed to all bank divisions so the departments can inform the employees concerned. This is depicted in the Provide–Accept relationship between the
Chapter 9 Applying the new Methodology to the Bank case Study

Training and other divisions. The Training department is also responsible for organising in-house courses and arranging by request the appropriate external courses by contacting the external training institutes. This is defined in the Client-Server relationship between the bank and the training institutes. After the employee has taken the course the Training department has the responsibility of sending his certificate to his department so it can be stored in the files and a copy sent to the personnel dept from the department itself. This is again defined through the Provide-Consume relationship between the training and other divisions.

9.1.4 Identify the New System Goal (Change Needs) and Requirements.

9.1.4.1 Conduct a session with problem owners to specify the new system goals.

After finishing the description of HRD current system, the problems were identified and the problem owners were established. Before investigating the possible changes to the current situation, the user goals of the bank had to be specified in order to know how to evaluate solution proposals. These goals were reached by interviewing the bank problem owners and asking them what they would like to achieve. The discussion revealed the following list of goals:

Personnel:
1. Documents in the employee files should be minimised.
2. Only authorised persons should be able to access the employee files.
3. Better communication procedures should be implemented among all divisions.

Compensation:
1. All changes to employee dependent information should be provided to the Compensation department.
2. All benefits and cover that are being provided to ineligible employees should be stopped.
Chapter 9 Applying the new Methodology to the Bank case Study

Recruitment:
1. New candidate application forms should be stored in a database system.
2. A job description should be made for all the organization's work positions.

Training and carrier development:
1. All employees' educational information should be provided to the Training department.
2. All Bank trainees should be informed about the training course timetable.
3. A good relationship should be established with other training agencies.

9.1.4.2 List the new system goals.

Now we can shorten the goals list above by moving to a higher level of goals in order to reach an agreement between problem owners. After negotiation with the problem owners of the bank the following goals were reached:

<table>
<thead>
<tr>
<th>NEED REFERENCE CODE</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Multiple documents in employee files should be minimised.</td>
</tr>
<tr>
<td></td>
<td>G1.1</td>
</tr>
<tr>
<td></td>
<td>G1.2</td>
</tr>
<tr>
<td>G2</td>
<td>Employee documents should be secured.</td>
</tr>
<tr>
<td>G3</td>
<td>All Divisions should have good communication procedure.</td>
</tr>
<tr>
<td>G4</td>
<td>The service of the Compensation department should be optimised.</td>
</tr>
<tr>
<td>G5</td>
<td>New candidate information should be kept in a database system.</td>
</tr>
<tr>
<td>G6</td>
<td>All report formats should be coordinated.</td>
</tr>
</tbody>
</table>

Table 9.6: List of goals

The goals in Table 9.6 are general enough to be related to the business mission of the HRD. Yet specific enough to be related to the goals of the different problem owners.
9.1.4.3 For each goal find-out the problems that prevent it from being achieved.

For each goal, in order to identify the reasons why it is not achieved, a list of problems that prevent the achievement of the goal has to be issued. To do this, a matrix of problems against goals is issued in order to find clusters of related problems. This is shown in Figure 9.7.

9.1.4.4 Cluster problems into groups of similar problems that are related to the same goals.

There is no algorithm to do the clustering; the understanding of the situation gained by analysing it from different angles should suffice to make the clusters. Each cluster defines a change need that will act as a goal of the development process. As is shown in Table 9.7, an example of clustered problems for the bank case study would be that for goal G₁ there are three clustered problems, which are P₁, P₂, and P₃.

9.1.4.5 Issue a matrix of problems against goals (Change needs).

When the problem list is compared with the goals of the project team then the change needs matrix is developed as shown in Table 9.7.

For each change need (project goal), the problems that were intended to be solved were listed with the objectives that the change should help to achieve.
Chapter 9 Applying the new Methodology to the Bank case Study

Table 9.7: A matrix of problems against goals (change needs).

<table>
<thead>
<tr>
<th>NEEDS</th>
<th>DESCRIPTION</th>
<th>PROBLEMS</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>All employee data should be accurate and up-to-date.</td>
<td>P1, P2, P3, P9</td>
<td>G1</td>
</tr>
<tr>
<td>N2</td>
<td>Coordination and communication should be applied among all departments in order to reduce multiple copies of employee documents and reduce budget expenses.</td>
<td>P1, P2, P3, P4, P5, P6, P9</td>
<td>G1, G1.1, G1.2, G3, G4 G6</td>
</tr>
<tr>
<td>N3</td>
<td>Only authorised persons should access employee records.</td>
<td>P1, P3, P9</td>
<td>G2</td>
</tr>
<tr>
<td>N4</td>
<td>The compensation system should be improved.</td>
<td>P2, P5, P9</td>
<td>G1.1, G3, G4</td>
</tr>
<tr>
<td>N5</td>
<td>The recruitment process should be improved.</td>
<td>P7, P9</td>
<td>G5</td>
</tr>
<tr>
<td>N6</td>
<td>Managerial and statistical reports should be improved.</td>
<td>P6, P9</td>
<td>G6</td>
</tr>
</tbody>
</table>

9.1.5 Generate a List of Change Alternatives.

9.1.5.1 Meet with problem owners.

At this stage the project team meets again in order to carry forward their ideas of the changing alternatives that could be implemented in the new system. These ideas are written down only without evaluations. See Table 9.8 for the list of change ideas produced at HRD.

9.1.5.2 Evaluate change needs according to the problem owners' point of view.

The change alternatives were then evaluated by examining different alternatives of changing flows and/or activities. Could the flow occur in another way? Could the activities be performed in another manner? The answer to these questions led to the change alternative document in Table 9.8. At this process the bank problem owners were able to develop different models (A1, A2, A3, A4, A5) until they
Chapter 9 Applying the new Methodology to the Bank case Study

accepted an ownership of these models and felt they can represent their requirements.

9.1.5.3 Issue a matrix of change alternatives.

Table 9.8 shows that all the alternatives involve changes to the existing information system of the Human Resources Division. It also shows that the lack of communication problem in the Human Resources Division causes most of the other problems between departments.

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>The Recruitment department should have a database system in order to keep track of all new candidates application forms.</td>
</tr>
<tr>
<td>A2</td>
<td>An automated information system is required in order to integrate all departments in the Human Resources Division. This is to enhance the communication process and support the services provided to the bank.</td>
</tr>
<tr>
<td>A3</td>
<td>An automated system should be implemented in order to improve communication between Personnel and Recruitment departments.</td>
</tr>
<tr>
<td>A4</td>
<td>Facilitate automatic reporting on employees who are ineligible for insurance or school cover.</td>
</tr>
<tr>
<td>A5</td>
<td>Facilitate the production of managerial and statistical reports with standard format by implementing an automated information system.</td>
</tr>
</tbody>
</table>

Table 9.8: A matrix of change alternatives
Chapter 9 Applying the new Methodology to the Bank case Study

9.2 System Modelling

9.2.1 Choose the Best Alternative Package for the Organisation.

9.2.1.1 Present alternative packages of related changes to be investigated.

It was then time to make a package of one or more change alternatives that were worth investigating. The responsibility model was used to investigate the package allowing discussion about the package and comparison with the current situation.

The packages that were constructed are as follows:

2. A2+A3+A4+A5: Implement an automated information system.

It was realised that only the first alternative solves the problem of the Recruitment department and perhaps the Personnel department as well, but it does nothing for the other departments in the Human Resources Division (HRD.)

All other alternatives require an automated system. It was concluded, therefore, that if an integrated system were developed for H.R.D it would cover all other alternatives.

9.2.1.2 Evaluate each package solution.

An investigation was conducted at this stage to see which problems are introduced by each package, and for whom. To produce this, a matrix of problems against problem owners was constructed for each package.

In the Bank project, a matrix was constructed for evaluating the alternatives that were recommended from the project group. An "O" in an entry form means that the problem is solved for the problem owner. An "X" means that a problem exists for a problem owner. Table 9.9 contains the matrix for the automation package (A2+A3+A4+A5) which gave the best score with respect to the bank development goals.
Chapter 9 Applying the new Methodology to the Bank case Study

<table>
<thead>
<tr>
<th></th>
<th>Personnel</th>
<th>Compensation</th>
<th>Training and career development</th>
<th>Financial</th>
<th>Recruitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1. Redundancy of information</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>P2. Inconsistency of data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>P3. No security</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>P4. Each employee file has a large amount of documents</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P5. Financial loss</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6. Inconsistent Statistical and managerial reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P7. Employee starting date</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>P8. A huge consumption of paper.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>P9. Lack of coordination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 9.9: Matrix of problems and problem owners for the automation package (A2+A3+A4+A5)

9.2.1.3 Select the best package for the organisation.
In this step the sponsor is presented with a report on the evaluation of alternatives and then chooses one of them.

In the bank project, after presenting the evaluation of alternatives to the sponsors it was decided that package-2 is the only alternative that could solve most of their problems.

9.2.1.4 Pre-implementation impact analysis
Concerning the BBK case study the impact of the new changes was acceptable to the Human Resources sponsors so there was no alteration to the original changes.
9.2.2 Model the Required System Using the Responsibility Model.

9.2.2.1 Decompose the responsibility model in the change analysis stage into obligations using the role model.

Figure 9.5 represents the restructuring and realignment of responsibilities that would occur if the automated system were implemented. Several key organisational responsibilities would have to be reassigned and realigned.
Figure 9.5: The future system for the Human Resources Division
Chapter 9 Applying the new Methodology to the Bank case Study

The personnel
In the new system other divisions will have the responsibility of informing the Personnel department on which day the new employee started, this is called the joining date. This is to distinguish between the date the employee is willing to start work and the actual date that the new employee joins the organisation. The context of this is defined in the relationship Provide-Accept between other divisions and the Personnel departments. This is different from the old system where the Recruitment department is the one that has the responsibility to inform the personnel on the starting date. This process will solve the problem of the contradiction between the starting date and the physical joining date of the new employee. It will also solve the problem of the delay by the Personnel department in informing the finance department to start processing the salary for the new employee.

The Personnel department now has to make available to the Compensation department the employee information needed in order to update the employee dependent records. This is described in the Provide-Consumc relationship between the Personnel and the Compensation departments. In the old system the Compensation department used to depend on the existing information in the other divisions and the honesty of the employees. From Figure 9.5, the resources flow between the Personnel department and the Compensation department can be identified and the question, “What type of resources flows between the departments; and who has access to this resources?” can be asked. To answer these two questions, the type of resources that flow from the personnel to Compensation department will only contain information about the employee medical and dependant records. This is the only access right that the Compensation department will have in the personnel information database.

Compensation department
The Compensation department will have the right to access the employee dependants’ data files to see the updated information on the employee dependants only. This is to speed up the process of the Personnel department informing the
Chapter 9 Applying the new Methodology to the Bank case Study

Compensation department of any changes required to the employee dependent information. This process will solve one of the problems of budget overspending, which resulted from permitting ineligible employees' dependants having insurance cover or school cover.

Training and career development

Training and development department will have access to the employee education data file only. This is to help in assessing the staff training needs.

Training department will then have one more responsibility to fulfil, which is to provide the Compensation department with a copy of the trainee certificates and information when bank employees enrol on any training courses. This is depicted in the Supplier-Consumer relationship between the Training and Compensation departments. This is to solve the problem of delaying the benefit compensation for the bank employees and also to assess the salary of the employee. In the old system there was hardly any connection between the compensation and Training departments. The original certificate will be sent to the Personnel department. The Training and career development department now has to make a copy of the trainee certificate and send the original to the Personnel department in order to be kept in the employee history file. Then a copy will be sent to the concerned division in order to be given to the employee. In the old system this document was made available to the employee's division only.

Also in the new system the Personnel and Training departments have to work as a team in order to develop the training plan in the organisation. This is depicted in the Peer – Peer relationship.

9.2.2.2 Discuss the new assignment of responsibilities resulting from the proposed system.

Recruitment department: One new responsibility has been assigned to the Recruitment department after modelling the system, which is:
Chapter 9 Applying the new Methodology to the Bank case Study

• To give information about new candidates to other divisions.

Other Divisions: A new responsibility has been assigned to all other divisions, which is:

• To give information about the new applicant starting date to the Personnel department.

Personnel department: A new responsibility has been assigned to Personnel department, which is:

• To give to the Compensation department all information needed to update the employee dependants’ records.

Training department: Two responsibilities have been assigned to the Training department these are:

• To give updated employee training information to the Compensation department.

• To give all employee training information to the Personnel department.

9.3 Socio-Technical Design

As mentioned in chapter-1, the aim of this thesis is to concentrate only on the first two stages of the new methodology and leave stages 3 and 4 for future work (see chapter-10, section 10.4 for future work). Therefore this research has ended here.

However, as an update, the Bank has indicated me that they have given the study to a consultant company in order to review it and maybe add their suggestion to it. Feedback from the consultant company has arrived which shows that the new methodology is effective. The feedback from the consultant company is given in Appendix-2.
9.4 Concluding Remarks

The field work study presented in this chapter demonstrates the use of the newly developed methodology in the real world. The new methodology was implemented in the Bank of Bahrain and Kuwait in the state of Kuwait to study the current system in the Human Resources Division and to give advice for the future system of the Division.

Using the BBK case study the first stage of the new methodology concentrated on the importance of people (endusers, managers, and funders) and their problems in the bank organisation. The benefit from this process was to identify the fundamental causes of users' problems in the existing HRD system, specify the changes that need to be made and give alternative solutions to the current problems. In addition the new methodology enable the users to carry out the problem analysis themselves by providing them with a series of easy tools, tables and method steps. For example, in BBK, the problem tables were given to different levels of problem owners (executive managers, middle managers, and lower end users) to be filled out in order to capture their requirements. Another tool is the cause effect graphs that were understood by all different levels of problem owners in the BBK organisation. The feedback from problem owners concerning these tools is that the tools are easy to use and understand. These tools enable the problem solver to share a common language with the problem owners in order to elicit and capture their requirements.

The advantages of spending a lot of time on identifying the users' problems and needs in the first stage of the methodology are as follows:

- To educate the users to give a better understanding of the organisation. In the bank case study, this was done by letting the bank problem owners discuss problems and analyse their work themselves by providing them with a series of easy tools and methods.

- To support the communications process between the users and developers making sure that they talk the same language. In the bank case study, it was
It was not possible for the problem owners to understand what was happening in the development process until all the tools and techniques were explained and illustrated. This process made it easier for the developer and problem owner to understand each other and use a common language.

- To give a better understanding of the users' requirements. In the bank case study, a lot of time was spent on identifying user needs and objectives. This is shown in sections 9.1.4 and 9.1.5. This process was carried out through a lot of negotiation and compromise between the bank problem owners themselves with the help of the developer.

The feedback of the bank users concerning the various meetings was that they felt tired of attending these meetings but then on the other hand they felt they had never understood the organisation and their work as much as they did afterwards.

Secondly, listing the needs and goals of BBK in tables and trying to solve the problems that prevent these goals from being achieved enabled the project team to identify the business strategy of HRD and determine what the new system should provide for the bank in the future. This issue is not addressed by the ORDIT methodology but addressed by ISAC and the new methodology. See Table 9.10.

In the modelling stage the responsibility model was used instead of the A-graph used in the ISAC methodology in order to implement the enterprise modelling used in ORDIT. This is to shift from identifying the business strategy and user needs in the first stage, to the organisational issues and needs in the second stage of the new methodology. Through the process of listing the responsibilities and obligations for each department in the Human Resources Division it was possible to determine the division main policy. In the same manner, through listing the roles of agents in each department, it was possible to identify the job description of the division employees. Also using the enterprise modelling it was possible to identify the realignment of the organisation structure according to the users' requirements. This analysis proves the value of addressing the organisational
issues and needs which are not addressed by the ISAC methodology but are addressed by ORDIT and the new methodology. See Table 9.10.

The responsibility models in 9.4 and 9.5 provide a rich picture of the environment as well as the roles of agents, information flow, the structural relationships and the utilisation of resources in BBK. These models were constructed through an iterative meeting process between the analyst and the problem owners. The feedback from the problem owners at the end of this process was that they found these models easy to use and easy to understand. Also one critical advantage from involving the decision-makers and problem owners in the redesign process is that the problem of user resistance was solved, making it easier to discuss the redesign of the organisation structure. At the end of the second stage the problem owners will have made a decision on what type of computer system to obtain as well as setting out the IT strategy for the bank system.

The problem of negative user attitudes to any information systems was resolved by giving some incentives to users who can help in the development process. This point is explained in section 9.1.1.4.

Table 9.10 below lists the factors and subfactors that were addressed by the new methodology when it was applied to BBK. The table shows that when applying the new methodology more problems can be solved than when using either ISAC or ORDIT. The blank cells mean that the methodology does not support the analysis of a certain factor or subfactor.
Table 9.10: Identification of the factors and subfactors that are addressed by the new methodology compared with ISAC and ORDIT.

Analysis of Table 9.10 shows that all the factors that are supported by ISAC and ORDIT are supported by the new methodology. But neither ORDIT nor ISAC can addresses all the factors that are covered by the new methodology. For example,
Pre-implementation impact analysis is neither addressed by ISAC nor by ORDIT, but it is fully addressed by the new methodology.

The third and fourth stages were not completed in this case study. However, the BBK has now passed the work on to a consultant company to review what has been done so far and continue the project. The consultant company's review of the work reported in this thesis is given in Appendix-2.
Chapter 10 Conclusions and Recommendations for Further Research

10.0 Conclusions

Researchers in the area of software engineering have for long time used formal methods as a means of specifying systems. They believed that if the system is specified correctly using certain tools then various properties of the system could be tested. In addition, a validation function may be performed on the system to check that the developed system meets the requirement specification. The problem that has confronted the formal methodologies is how correct the constructed specification? By concentrating only on the functional aspect of the system, these tools fail to capture correctly the context and the environment of the system. Therefore, most of the formal tools ignore the capture of the non-functional requirements that are essential for defining today's system. The resulting problem facing system analysts who are using the formal notation is that they find themselves constructing and validating a specification that does not accurately reflect the needs and values of the system owners and system users.

ISAC is an example of a technical methodology using an activity model, which is insufficient for addressing the non-functional requirements and the organisational issues. However, the methodology has its strength in the user needs, and business strategies, which are essential for the development of IT system today.

ORDIT is a methodology that adopts the socio-technical approach in order to capture the non-functional requirements of the organisation by placing the system in its social context. In addition, it incorporates most of the organisational issues that are essential for the development of IT system. However socio-technical
methodologies show a weakness by ignoring some of the issues such as business needs and strategies that are also essential for the development of an IT system.

An evaluation criterion has been developed to examine the strength and weaknesses of ISAC and ORDIT methodologies against the following four factors namely:

- User needs
- Organisational needs
- Business needs and
- Socio-technical needs

Based on this evaluation criterion, this research introduces a new methodology that can help in the requirement engineering process when developing an IT system. This methodology is constructed by combining ISAC and ORDIT methodologies to solve a certain set of problems, some of which are solved by ISAC and some of which are solved by ORDIT, but neither of them solve all the problems that can be solved by the new methodology. The evaluation criteria framework shows that the new methodology has solved more subfactors than the two methodologies can solve together individually (See Table 9.11 in Chapter 9). These subfactors are:

- Pre-implementation impact analysis
- Infrastructure support for IT
- IT Strategy

The new methodology provides easy tools and modelling notation such as the tables and enterprise modelling language that can be understood by the problem owners and system analyst. These tools have been used for different problem owners at different levels of the Human Resources Division (the top management level, the middle management level and the user level). Their comments were that
Chapter 10 Conclusions and Recommendations for Further Research

these tools were easy to use and easy to understand. During the development process these tools acted as a communication medium between the system analyst and problem owners which made it possible for the system analyst to elicit the problems in the problem owners language and facilitated a debate with them.

The enterprise modelling language used in the new methodology made it possible to model and represent the structure of Human Resources Division (HRD). The benefits from using this model were to illustrate the positions of requirement owners involved, identifying their roles and responsibilities within HRD so that the requirement elicitation process could be demonstrated. Another benefit was to identify the structural and functional relationships between the departments of HRD. Using the responsibility model it was possible to model the current system at an early stage and build a picture of what is going on in the HRD current system. This process helped in transferring the requirements to the problem owners themselves, making the problem owner share a common language with the problem solver and thus enabling agreement that the correct requirement had been captured. Listing the responsibilities and obligations helped in determining the main policy of HRD and identified the job description of the division's employees.

10.1 The Importance of A positive Attitude

Before applying the new methodology to BBK case study, it was applied to solve the problems of the immigration system in the Ministry of Interior in Kuwait. This case study was not successfully implemented for the following reasons.

- None of the department’s managers agreed to be involved in the project group. A possible interpretation of this behaviour was that they felt too busy to participate in any work other than their job. So all they did was tell their employees to attend the project meeting.

- From first meeting with the employees, it was realised that they were not interested in attending the meeting. Even when it was explained to them why it was important to attend, none of them wanted to participate in the project. A possible interpretation of this behaviour is that they did not
want to use new methods or techniques and they only wanted to stick to what they know (fear of change).

- Another reason for the employees refusing to cooperate was that they felt that it was the job of systems analysts to participate in the project and therefore they did not want to get involved.

- After three meetings none of the employees were attending any more. The reason was that they felt it was extra work for them and there was no encouragement and incentives from upper management.

- Another interesting reason was that most of the projects that were done at the Ministry of Interior followed the hard system approach. The users at the ministry were hardly involved in negotiation or consulted for their point of view and therefore played a passive role in all the projects that were done at the ministry (and it seemed they were happy about it). One of the computer consultants at the ministry mentioned that users are only consulted at the testing phase of the project, before implementation. This is the only time that they are forced to work with the system so that they can discover problems with it. He continued that at the end of the project only the minor problems are fixed.

When the new methodology was applied to BBK bank, the attitudes of the management were completely different. It was realised that they wanted to try new methods to solve their problems and they were helpful in organising the meetings as well. The most important thing they did was encouraging their employees to get involved and above all they offered some incentives for participating in the project. The experience of the Ministry of Interior has shown the importance of a positive attitude for the success of the methodology. No problems can be solved if the owners do not care about the problems and the benefit of the methodology cannot be obtained unless the users want to improve their performance.
10.2 Cost-benefit of the New Methodology Used in BBK

Although, the cost for using the new methodology mostly appeared in the time spent in meetings between the system analyst and problem owners, there were benefits, which compensated for that cost. The calculation of these costs and the savings for one of the benefits is illustrated in Appendix1. To show the cost and benefits in brief, the project group has met three times a week for three months for average of 2hrs a session. The average cost of the group project is estimated as 8190KD (£16380). The cost of other employees involved in the project is estimated as 6825KD (£13650). Therefore the total cost of BBK bank for applying the new methodology is £30030. On the other hand, offering just one benefit of the new methodology, solving the employees' dependent compensation problem, can compensate this cost. To illustrate this benefit, according to the bank problem owners, 10% of the total employees are getting school and medical cover illegibly every year because the bank current system cannot detect the illegible dependants. The estimate of this cost is 15400KD (£30800) in the first year, see Appendix1. Therefore it is realised that using the new methodology can compensate the bank for their cost as well as an estimate saving of £770 for the first year only which is a lot of money to consider. Some other main benefits that can be offered to BBK are as follows:

- Developing the integrated system made it possible for all the HRD departments to speed up all the information transaction, eliminate all inconsistent and duplicated data. This process saved the bank time and effort.

- Assigning an ID number for all bank employees made it possible for the bank to hide the employee name from most of the financial transactions, which made the private information secured from the public.

Altogether, it has been shown that the new methodology can serve better than either ISAC or ORDIT methodologies in the process of system development. Finally, it is believed that this research has fulfilled its main aims, objectives and proved its hypothesis. This is accomplished by developing a new methodology
that can be used to talk to different levels of problem owners, let them develop models of the system until the desired model that captures their requirement is accepted. In addition, the responsibility model was used to model the current and future system of the bank and to identify the organisational requirement.

10.3 Requirement Elicitation Process

To point out the requirement elicitation process, one can look at the user participation throughout the new methodology. This process does not end prior to design and implementation as in conventional system but it is an ongoing process throughout the system development life cycle. The reason for that it is believed that requirements are developed over time as understanding of the problem to be tackled improves. In BBK case study a project team was developed which involved three main actors namely: the problem solver, problem owners, and sponsor or stakeholders. The process of communication between them may be regarded as a negotiation process, where potential problem owners of HRD system explore and fully understand the requirements, agreeing on what they want and what they need, while the problem solver becomes confident that they are solving the right problem.

The new methodology follows a form of iterative process where the users of the system participate in meetings and discussions held in the meeting room at different times. Through these meetings, tables and modelling languages are used to record and document all generated ideas. The facilitator, who acts as a chairperson of the meeting, has a critical role in organising the work of the requirement negotiation team. After each meeting, each member of the project team has to meet with his/her department groups in order to discuss all new ideas and have their feedback for the next project team meeting.

The new methodology also encourages partnership between the problem owners, sponsor and project team members in order to discuss open issues and to validate everyone's understanding of the information gathered especially in the new system changes. In addition, The processes of helping the problem owners develop their own models of the required system reveals that the transfer of problem owners understanding of business practice to the problem solver, who
will translate it into a working computer system, is the key to effective communication and requirement elicitation benefiting both parties.

Finally, a paper based on the contribution of this research, entitle “A new methodology for requirements analysis” has been accepted for publication by refereed international conference called “Australian Conference on Requirements Engineering (ACR’99)”, see Appendix-3.

10.4 Recommendations for Further Research.

This thesis has concentrated on the development of a socio-technical modelling framework, which is taken from combining ORDIT and ISAC methodologies. The purpose of this framework is to elicit, validate and verify the user and organisational information system requirements. It is not claimed that the framework of this integrated methodology is the best solution for the problem of requirement elicitation. However, the basic principles could be built upon to provide a more complete approach for requirement engineering.

One way to check the usefulness of the new methodology for the requirement elicitation is to perform further case studies. Within this thesis one case study taken from the private sector in Kuwait was used to examine the applicability of the new methodology. This case study was drawn from the real problem, which exists in the real world.

The most important and urgent recommendation is to examine the last two stages of the new methodology, which are the Socio-technical design and implementation. This would allow the organisational issues and business needs to be mapped all the way down into the technical part of the methodology so that their applicability could be explored and tested. It is also important to examine how well the social requirement can be fitted into the technical requirements in order to get the required system.

The new methodology could be applied to the government sector in Kuwait in order to examine how the modelling notation of both the organisational and information system worked and interacted. In addition, this case study will serve.
Chapter 10 Conclusions and Recommendations for Further Research

to identify the problem of the structural relationships in the interrelated responsibilities that exist within the organisational structure in the public sector. Another benefit of this case study would be to identify the strength and weaknesses of the new methodology techniques.

The third recommendation would be to increase the integration of the responsibility modelling techniques with other modelling techniques such as the modelling techniques used in ISP (Information Strategy Planning), SSM (Soft System Methodology), and ER (Entity Relationship Modelling). The benefit from the integration process is to provide the modelling technique used in this thesis with the ability to share information. Thus problem solvers would be able to capture and utilise information about the organisational system in a way similar to that represented in this thesis when using other forms of analysis. This process would have the effect of minimising the time spent for capturing and representing data, and maximise the use of the data that we already have available.
References

References

Coad, P. and Yourdon, E. (1991), "Object Oriented Analysis", Prentice Hall.

References

References

References

References

References

Appendix 1
Calculation of BBK Cost and Saving from One of the Benefits of the New Methodology

Calculation of the Cost

Cost of the Group Project

<table>
<thead>
<tr>
<th>No. of the Group Project</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Total Weeks</td>
<td>13</td>
</tr>
<tr>
<td>No. of Meetings Per Week</td>
<td>3</td>
</tr>
<tr>
<td>Average cost of each member per day</td>
<td>140KD (£280)</td>
</tr>
<tr>
<td>Average time for each meeting</td>
<td>2 hr</td>
</tr>
</tbody>
</table>

The Total Cost of the Group Project

\[
= 6 \times 13 \times 3 \times 140 \times 0.25 \\
= 8190 \text{KD (£16380)}
\]

Cost of the other BBK Employees Involved in the Project

<table>
<thead>
<tr>
<th>No. of the Employees Involved</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Total Weeks</td>
<td>13</td>
</tr>
<tr>
<td>No. of Meetings Per Week</td>
<td>2</td>
</tr>
<tr>
<td>Average cost of each member per day</td>
<td>70KD (£140)</td>
</tr>
<tr>
<td>Average time for each meeting</td>
<td>0.125 hr</td>
</tr>
</tbody>
</table>

The Total Cost of the Group Project

\[
= 30 \times 13 \times 2 \times 70 \times 0.125 \\
= 6825 \text{KD (£13650)}
\]

Total Cost of Employees Involved

\[
= 15015 \text{KD (£30030)}
\]

Calculation of the Cost Compensation and Saving from one of the New Methodology Benefits

Saving from the Schools and Medical Cover

Estimated Average No. of the BBK Employees' Total No. Employees' getting illegible cover

Average No. Of Child per Employee

Average School Cost

\[
1700 \text{KD (£3400)}
\]

Average Cost of the Medical Cover for each dependent

\[
= 500 \text{KD (£1000)}
\]
The Total Saving from one Benefit = \(7 \times 1 \times 2200\)
\[15400\text{KD (\£26600)}\]

Net Saving for the BBK in First year = \(15400\text{KD} - 15015\text{KD} = 385\text{KD (\£770)}\)
Appendix 2
Quotes from the Consultant Company
Dear Mr. A. Al-Zaid,

This document has been produced following meetings with Bank of Kuwait and Bahrain staff at their offices in Kuwait. It presents an evaluation of the proposed methodology applied to enable BBK to move from their existing situation towards an integrated, reliable and secured environment.

The key issues are obviously minimizing the manpower recruitment cost, eliminating the redundancy of information, providing extensive security mechanisms to control authorized users and their access roles, managing the user expectations and understanding exactly what it is the business needs rather than what it thinks it wants.

Upon the BBK management request, a study has been done to assess the productivity of the people who were involved in the different stages of the proposed methodology, the benefits and finally, the quality derived from this new technique.

Attached the result of this study, which we believe it can be considered as a good practice for a new era of thinking and business modeling.

Yours Sincerely,

George Ghaoui
Project Manager
Stage I: Change Analysis

The points that I think very effective at this stage are as follows

- The suggested combination of workshops and meetings provides the opportunity to define the gap and duplication as well as potential future process improvements.

- The business problems of the Human Resources Division (HRD) were analyzed in a very clear and effective way.

- The cross reference matrix between groups and business process shows the ideal usage of data by process.

- The proposed methodology defines in a clear way the organization structure, the scope of the system and its relationship with the internal and external actors.

- The model techniques defines clearly the tasks of each person, the relationship with his environment and eliminates the conflict between the different divisions and departments.

- The suggested methodology manages the transactional as well as informational needs of the bank.

- Although, a lot of HRD functions’ has been analyzed by the proposed methodology some other functions are not, such as employees over time, type of leave or absents, etc.

Stage II: System Modelling

- The list of measurements which has been defined during this stage in order to start the package evaluation process and choose the cost/effective solution are very effective and satisfactory.

- The way of defining the problems that are introduced when applying a new alternative package and then presenting these problems to the users is very effective and important.

- Also, evaluating the impact of the new system changes on the BBK’s Human Resources Division before implementation is a highly recommended process and very effective.
Stage III: Socio-Technical Design

Testing Strategy

In this section, I have included some extracts from our own methodology and compared this against the testing practices that have not been well defined by the proposed methodology.

In order to fully understand this section of the report and our Testing Strategy it is necessary to understand the proposed Configuration Management rules that we advocate. Briefly this is that there should be four environments or areas. These are shown in diagrammatic form below.

The Proposed methodology currently uses 3 environments:

- A development area
- A QA area
- A production area

we do not consider that this is adequate.
Currently when a programmer has developed a new program, or made changes to an existing program he runs tests against this new version of the program in the development environment. There is no evidence that these tests are carried out in a structured manner, i.e. that there are any test packs, test scripts, expected results or comparison between the actual results and the expected results.

Below is an extract from our standards which shows the process that we recommend to be adopted for Unit Testing.

Detailed Unit Test Process

1. Review Program Spec
2. Define all Test Conditions
3. Approve Unit Test Specification
4. Set up Empty Test Data Bases
5. Specify Test Data Base Records
6. Load Test Databases
7. Run Tests
8. Record Actual Test Results
9. Check Actual Results against Expected
10. Sign off Successful Tests
11. Complete Configuration Management Form

Actions 5 through 9 are repeated several times for each Program or Module

System Testing

Currently, when the programmer has completed his testing the Section Head promotes the program into the QA environment and performs some testing on the overall system. Again, there is no evidence that there is any structure planning in this testing.

Below we show an extract from our standard which addresses the System Testing phase of testing.
Acceptance Testing

This is the stage of testing where the users become involved and it is where they formally agree to accept the new/changed system. Currently, this is performed in the QA environment (we recommend that it be performed in a separate environment).

The Acceptance Testing stage should additionally cover some of these aspects that are of particular importance to the user community and will, in addition, cover specific aspects of the system in which the user community is particularly interested. This will typically include:

- effect of the system going down during processing
- successful recovery from back ups
- fall back procedures and provision of minimum facilities
- security aspects, testing access restrictions and privileges
- volume testing
- interfaces to and from external systems
- conversion routines from existing systems
Below is an extract from our standards dealing with Acceptance testing.

Detailed Acceptance Test Process

1. Prepare Outline Acceptance Test Plan
2. Define all Test Conditions
3. Define Data Detail & Expected Results
4. Review & Approve Acceptance Test Spec
5. Set up Infrastructure
6. Organise People
7. Run Tests
8. Record Actual Test Results
9. Check Actual Results against Expected
10. Sign off Successful Tests
11. Complete Configuration Management Form

Actions 6 through 8 are repeated several times for each System.
Appendix 3
Published Paper
READ-IT: A Methodology for Requirements Elicitation and Analysis for the Development of I.T. Systems

Asad Al-Zaid and Ray Dawson

Dept. of Computer Science,
Loughborough University,
Loughborough, Leics. LE11 3TU, UK

Tel. +(44) 1509-228226, Fax. +(44) 1509 211586
Email: alz3@hotmail.com

Abstract

An important stage in software engineering is the analysis of the system requirements. Systems have been known to fail because the requirements analysis has concentrated only on the technical problems without taking into account the change implications for the users and the organisation. In this paper a new methodology is described for requirement elicitation within the context of an organisation. It focuses on the representation of user and organisational requirements in the design of a socio-technical system with the aim of ensuring the users “own” the system designed and that the organisational change implications are fully understood and taken into account. The new methodology is illustrated in a case study at an international bank and is shown to be effective in fully capturing the requirements of a working organisation.

Introduction

There have been a number of high profile cases of IT system failure that have been attributed to a poor understanding of how the new system will require changes in the organisation’s structure and the users roles within this structure (eg. the London Ambulance Service [1]). Furthermore, it is the authors’ experience that unless the
users are involved in the design so that they can feel they “own” the new system, they will not have the same desire to make it work. The requirement elicitation process is a social process, which aims at creating communication channels between the client and the system developers that will continue throughout the project life cycle.

The authors of this paper have examined different requirements methodologies to find a means of ensuring that requirements elicitation will fully identify the organisational and individual user requirements, and that any new system proposed will take into account the changes implied for both the organisation and the individuals. A full report of this review is beyond the scope of this paper, but no one methodology was discovered that would fully satisfy both the user and organisation needs. Two methodologies stood out, however: ISAC [2,3] because its analysis involved the participation of the users themselves, and ORDIT [5,6] because it was the only methodology found that attempts to capture the change needs of an organisation.

A new methodology has, therefore, been developed for the identification and elicitation of user and organisational requirements known as READ-IT (Requirements Elicitation and Analysis for the Development of IT systems). This is based on the two existing methodologies, ISAC and ORDIT, combined in a complementary fashion addressing itself in a homogeneous way to the entire analysis and design section of the information system life cycle. Combining ISAC’s strength of user involvement in problem identification and business analysis with ORDIT’s strength in capturing organisational requirements using responsibility modelling, a new and more effective methodology is formed.

ISAC

ISAC (Information Systems Work and Analysis of Change) is a methodology for the analysis and design of information systems that makes extensive use of graphics as a working tool during the design process and as a design product presentation device. The ISAC methodology is very strong in “Change Analysis” in the early stages of system design. It employs the users themselves to model the existing and proposed systems. However, the activity model, which is used throughout the methodology, is
insufficient for addressing some of the essential elements of system development such as organisational issues, non-functional requirements and socio-technical aspects.

ISAC is explained in more detail in literatures by Lundeberg [2,3]. Through experiments and case studies the authors of ISAC have proved that the methodology can help in the user requirement definition process when used in the software development life cycle [4]. The strength of ISAC lies in its intensive user participation, and the early identification of the business strategy and the business mission, which occurs mainly in the change analysis stage in ISAC.

ORDIT

ORDIT [5,6] is a methodology that uses the socio-technical approach when designing a system. It concentrates on the interaction between people and IT within the organisation as part of the system. One of the its main objectives is to elicit the organisational requirements which comes out of a system being placed in the social context rather than those requirements which are taken from the tasks to be performed or the functions to be supported. ORDIT uses an enterprise modelling language as the main tool of the methodology with an essential component being the responsibility model for modelling the organisation and its systems. The ORDIT philosophy is to model the responsibilities in the organisation to reveal, firstly, the functions of the organisation which are presented in the responsibility held by agent entities, and secondly, the structure of the organisation which is presented in the responsibility relationship between them.

Why the Responsibility Model?

The responsibility model is adopted for the READ-IT methodology, rather than other modelling tools such as the activity model used in ISAC, for the following reasons:

1. Using the responsibility model, it is possible to define the organisational structure through the structural relationship between agents. The structural relationship
defines the value and nature of the relationship between agents. For example, the peer to peer relationship between two agents tell us that there is no power of one over the other and these two agents have to work together and negotiate in order to reach a decision. Figure 2 has an example of this relationship.

The activity model used in ISAC methodology does not allow us to define the nature of the relationship between agents and is insufficient for exploring the nature of the relationship between the borrowing and reservation agents.

2. Using the responsibility model it is possible to define the policy of the organisation through the structural relationships between agents.

3. Using the responsibility model it is possible to identify requirements at different levels of the organisation. At the agency level which is the highest level in the organisation the requirements are concerned with policies; at an individual level the requirements are concerned with making work easier. At the intermediary level, which is the role level, requirements are concerned with how the organisation itself functions and what obligations and capability tokens are necessary to support this.

Other models cannot define the organisational requirement at different levels.

4. Using the responsibility model helps in providing an overview of the stakeholders' role without initially going into a tremendous level of detail. Figure 1 defines all the stakeholders' roles that will be affected by introducing the new system to a division of an international bank. For example, the role of the advertising agency is to provide public awareness of the jobs available at the bank, the role of the job agency is to select the most suitable candidate for each job and so on. The model gives an overall clear representation of what is going on at a higher level.

5. The responsibility model is not difficult to understand and can be used by representatives within the organisation as well as the systems analyst.
The READ-IT Methodology

The new methodology combines the selected aspects of ISAC and ORDIT and where necessary introduces new processes of its own as given in the following step by step description:

1.0 Change Analysis

This first stage identifies the nature of the problems to be solved, and identifies what the client needs. It includes the following steps:

1.1 Identify the Business mission: The client describes the world in which they are operating and identifies the business mission of the organisation.

1.2 Problem Listing: The problems that prevent the business mission from being achieved are identified then documented in a list of problems table. A project
group is formed, consisting of representatives from all the stakeholder and user groups affected. These problems are presented to the project group who, in turn, take the problems to their own department groups in order to generate feedback.

1.3 List of Problem Owners: Problems are usually related to the viewpoints of the participants in the system, so this step identifies which problems affect which group of users or stakeholders.

1.4 Cause-Effect Analysis: After getting agreement on the identified problems a cause-effect analysis for each problem is performed with the help of the analyst. This can reveal yet more problems and so the problem and owner lists are updated.

1.5 Quantifying the Problems Identified: Each problem is then quantified to enable the project team to decide whether to invest in the solution process.

1.6 Model the Current System: Modelling the current system of the organisation can be used as a platform for generating and discussing alternative solutions and represent the current understanding of the socio-technical system by producing various sets of models. Modelling the current system helps the analyst to determine the boundaries around the system under development. To understand the purpose and structure of the organisation, the current system is decomposed into its sub-components, to explore and draw the implications of the organisation’s structure. Modelling the current system will also help elicit user requirements by generating feedback that can then be applied to adjust the model. This process will help in generating and discussing alternative solutions and in the understanding of how responsibilities and authorities in the organisation are going to change as a result of introducing the new system.

1.7 Identify New System Goals (Change Needs): The project group specifies the goals to evaluate any solution proposal. It is recommended at this stage to make goals as general as possible to achieve agreement between the problem owners. For each goal specified, the problems that prevent it from being achieved are
identified. The benefit is two fold, (1) to compare what is wanted (the goal) with what is available (the problem), and (2) to accomplish each goal by trying to solve its related problems. For each project goal a list is made of the problems to be solved and the objectives that the change should help achieve.

1.8 Generate a List of Change Alternatives: All ideas of change alternatives are written down (brainstorming) in order to be evaluated and the most suitable alternative for the organisation agreed with the problem owners. In addition, all user and organisational requirements are finalised at this stage so they can be discussed and included in the final solution. The alternatives are presented to the problem owners in natural language form to obtain agreement on the future system and how the deficits in the current system should be overcome. Discussion of the alternatives will also identify any conflicts of requirements, particularly in definitions of boundary objects and organisational impact.

Second Stage

2.0 Modelling the New System:

User requirements and priority ordering are considered at this stage in order to generate possible design options for the socio-technical system. The sponsor and problem owners have to choose the most suitable package for the organisation with the help of the analyst/facilitator when needed. The steps in this stage are as follows:

2.1 Evaluate Each Alternative Solution: Each alternative solution is investigated to see which problems the proposed solution resolves. To produce this, for each solution alternative a matrix of problems against problem owners has to be constructed showing which problems are solved and which remain.

2.2 Select the Best Alternative: The sponsor is presented with a report on the evaluated alternatives so a choice can be made. The problem solver can suggest a choice but it is important that the sponsor authorises this choice.
2.3 Pre-Implementation Impact Analysis: This is a new process, which is not included in either ORDIT or ISAC. The benefit of this process is to evaluate the impact of the new changes of the chosen packages on the organisation. If the chosen new package is too costly or too disruptive to the current system then the sponsor or problem owners might reject it. This process is necessary to save time and effort in the later stages of the development life cycle as a project may be abandoned if the impact of the changes is too disruptive or there is insufficient money to complete the project. The system analyst has to perform this process to be aware of the situation and, where necessary, to go back and alter the proposed changes to be acceptable. This process is repeated until the problem owners and sponsor accepts one of the proposed solutions.

Case Study

The Human Resources Division (HRD) in an international bank in Kuwait needed to expand its IT system in order to compete with the high demand for the bank's resources. A study was undertaken to help the Division get a more efficient system for their administration. The role of the READ-IT methodology was to capture the user and organisational requirements for the proposed system, identify the current problems and suggest solutions for the future.

The HRD provides a wide range of services to the bank. The division consists of four departments namely, Recruitment, Compensation, Personnel & Training and Career Development. The Recruitment department consists of three sections namely, Security, Dispatch and Archive. Each department has its own staff, and own activities and routine performed using a mixture of manual and computer supported procedures. The computer facilities were a mixture of small networks and stand alone PCs.

The first meeting was established between the bank's sponsors and the system analyst to obtain a description of the organisation and how it operates. The result of this discussion was an agreement to focus on current problems of the HRD systems. Meetings were then held with the HRD to identify in more detail the problems of the current system. A list of problems was created which, for example, included
information provided by some HRD departments not being up-to-date, and different departments using different report layouts and presentation styles.

The users that were affected by these problems were identified and documented in a table of problems against problem owners. The project group members were chosen as representatives of the different groups of problem owners identified. The members were mostly from middle management with decision making responsibilities. The project group then performed the cause-effect analysis. Through this process more problems were discovered and the list of problems were updated accordingly. A quantitative study of the severity of the problems enabled the decision of whether to invest in the solution process or not.

Once the problems of HRD were established, it was possible to determine the boundaries of each problem by identifying those stakeholders or agencies within and outside the HRD system (see Figure 2). Only the agencies or departments within the boundaries of the problem were looked at in more detail. For each department within the HRD all responsibilities and its associated obligations were listed. This helped identify the existing policy implemented within HRD.

The next step was to model the current system of the HRD using the responsibility model. This model helped elicit information about the role and function of HRD within the bank, the force for change, and issues and perspectives to be adapted. The responsibility model in Figure 2 acted as the platform for generating and discussing alternative solutions.

In the pre-implementation impact analysis step, the impact of the new changes on the current system were studied and evaluated by the sponsors and stakeholders of the bank. All changes suggested to the current system of HRD were accepted and so the new system was modelled.
Figure 2: Responsibility model of the bank future system
Figure 2 shows the restructuring of the existing system and the realignment of responsibilities when adopting the new system. For example, the Personnel department now has to make available to the Compensation department the employee information needed in order to update the employee dependent records. This is described in the Provide–Consume relationship between the Personnel and the Compensation departments. In the old system the compensation department used to depend on the existing information held in other divisions and the honesty of employees.

From modelling the new system, all the new responsibilities were identified and documented.

This case study is on-going, the proposed new system is currently being considered by the bank who have passed the analysis findings on to independent consultants to review and carry forward to the implementation stage. However, the feedback from the bank employees so far is that they feel a great deal has already been achieved as they have greatly increased their understanding of their processes and problems, and that a realistic, workable solution has been identified as a way forward.

Advantages of the READ-IT Methodology Shown by the Case Study

The first stage of the new methodology concentrated on the importance of people (end users, managers, and funders) and their problems in the organisation. This process helped identify the fundamental causes of the users' problems in the existing HRD system, specifying the changes that need to be made and giving alternative solutions. In addition, the new methodology enabled the users to carry out the problem analysis themselves by providing them with a series of easy tools, tables and method steps. For example, the problem tables were distributed to different levels of the bank problem owners (executive managers, middle managers, and lower end users) to be filled out by them to fully capture their requirements. Tools such as the cause effect graphs were understood by all levels of problem owners in the bank organisation. The feedback
from these problem owners concerning these tools is that the tools are easy to use and understand. This shows that these tools enable the problem solver to share a common language with the problem owners enabling a more effective elicitation and capture of their requirements.

The READ-IT methodology involves devoting time to identifying the users' problems and needs in the first stage. The advantages of this were found to be:

- It gives the users a better understanding of their own organisation before implementing any changes. In the bank case study, this was done by letting the bank problem owners discuss their problems and analyse their work themselves assisted by a series of easy tools and methods.

- It supports the communications process between the users and analyst making sure they talk the same language. In the bank case study, it was not possible for the problem owners to understand what was happening in the development process until all the tools and techniques were explained and illustrated. This common language then made it easier for the analyst and problem owner to understand each other.

- It gives the analyst and users a better understanding of the users' requirements. In the bank case study, a large proportion of the available time was spent on identifying user needs and objectives with much negotiation and compromise between the bank problem owners themselves facilitated by the system analyst.

- The greater understanding of user and organisational needs leads to fewer and more manageable problems in the later stages of the system development and may avoid the system failing altogether.

The feedback of the bank users concerning the various meetings was that they felt tired of attending these meetings but then, on the other hand, they felt they had never understood the organisation and their work as much as they did afterwards.
Listing the needs and goals of HRD in tables and trying to solve the problems that prevent these goals from being achieved enabled the analyst to identify the business strategy of HRD and determine what the new system should provide for the bank in the future. This is an aspect of ISAC adopted in the new methodology.

In the modelling stage the responsibility model was adopted from the ORDIT methodology. This helped to identify the organisational issues and needs in the second stage. Through the process of listing the responsibilities and obligations for each department in the Human Resources Division it was possible to determine the division’s main policies. In the same manner, through listing the roles of agents in each department, it was possible to identify the job descriptions of the division employees. Also, using the responsibility model it was possible to identify the realignment of the organisation structure necessary to meet the users' requirements. This analysis proves the value of addressing the organisational issues and needs. The bank responsibility model in Figure 2 provides a rich picture of the environment as well as the roles of agents, information flow, the structural relationships and the utilisation of resources in the bank. This model was constructed through an iterative meeting process between the analyst and the problem owners. The feedback from the problem owners at the end of this process was that, as with the tables and methods, they also found these models easy to use and understand.

Conclusion

This paper presents a new methodology, READ-IT, which is based on the combination of ISAC and ORDIT methodologies extended with an additional original processes, the pre-implementation impact analysis. The stronger factors of ISAC and ORDIT form the foundation for the new methodology, which is effective in identifying and eliciting the user and organisational requirements.

A project team of stakeholder representatives was necessary to capture and elicit requirements throughout the bank project. There are three main actors of the project team namely: the problem analyst, problem owners, and sponsor or stakeholders. The process of communication between them may be regarded as a negotiation process,
where potential problem owners of the system explore and fully understand the requirements, agreeing on what they want and what they need, while the problem analyst becomes confident that they are solving the right problem. As McKeen [7] stated "users and developers will benefit from close interaction by exchanging views, identifying, and resolving conflicts as well as sharing information necessary to effectively accomplish the task."

The READ-IT methodology follows a form of iterative process where the users of the system participate in meetings and discussions held at different times. Through these meetings, tables and modelling languages are used to record and document all generated ideas. The facilitator (the analyst) acts as a chairperson of the meeting and has a critical role in organising the work of the requirement negotiation team. After each meeting, each member of the project team meets with his department groups to discuss all new ideas and to generate feedback for the next project team meeting.

The new methodology also encourages partnership between the problem owners, sponsor and project team members to validate everyone's understanding of the information gathered, especially in new system changes. This supports the requirement definition process, as Koltsblatt and Beyer [8] concluded, it is about people talking effectively to each other.

The processes of helping the problem owners to develop their own models of the required system reveals that the transfer of problem owners understanding of business practice to the problem analyst is the key to effective communication benefiting both parties. This, and the understanding of the organisational issues obtained from the responsibility modelling has been shown to make the READ-IT methodology very effective in fully capturing the organisational and individual requirements of a working environment.
References

