The role of thermal and touch sense in the perception of skin wetness at rest and during exercise in different environments

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: FILINGERI, D. ... et al., 2013. The role of thermal and touch sense in the perception of skin wetness at rest and during exercise in different environments. IN: Balagué, N. ... et al., (eds.) Book of Abstracts of the 18th Annual Congress of the European College of Sport Science – 26th - 29th June 2013, Barcelona – Spain, pp. 26 - 27.

Additional Information:

- This abstract was published in the Book of Abstracts of the 18th Annual Congress of the European College of Sport Science – 26th - 29th June 2013, Barcelona – Spain. The conference website is at: http://www.ecss-congress.eu/2013/13/

Metadata Record: https://dspace.lboro.ac.uk/2134/12683

Version: Published

Publisher: © European College of Sport Science

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
18th annual Congress of the
EUROPEAN COLLEGE OF SPORT SCIENCE
26th - 29th June 2013, Barcelona – Spain
BOOK OF ABSTRACTS

Edited by:
Balagué, N., Torrents, C., Vilanova, A., Cadefau, J., Tarragó, R., Tsolakidis, E.

Hosted by the:
National Institute of Physical Education of Catalonia (INEFC)

ISBN 978-84-695-7786-8
THERMOREGULATORY RESPONSES OF ATHLETES WITH A SPINAL CORD INJURY DURING INTERMITTENT WHEELCHAIR EXERCISE IN COOL CONDITIONS

Griggs, K., Leicht, C., Price, M., Goosey-Tolfrey, V.
Loughborough University

Introduction: Individuals with a spinal cord injury (SCI) have impaired thermoregulatory control, resulting in a loss or reduction in sweating capacity and an inability to make effective vasomotor adjustments. Individuals with high level cervical lesions (tetraplegia, TP) possess a greater impairment in thermoregulatory control than individuals with lower level lesions (paraplegia, PA). Although the thermoregulatory responses of athletes with SCI have been reported, no data has compared the responses of athletes with TP and PA during an intermittent sprint protocol (ISP). The purpose of this study was to investigate the thermoregulatory responses of athletes with TP and PA during intermittent wheelchair exercise and recovery. Methods: Eight wheelchair rugby players with TP (lesion level C4/5-C6/7, body mass 65.2 ± 4.4 kg, VO2peak 1.55 ± 0.37 L min⁻¹) and eight wheelchair basketball players with PA (lesion level T4-S1, body mass 68.1 ± 12.3 kg, VO2peak 1.92 ± 0.47 L min⁻¹) completed a 60 min ISP at maximal effort on a wheelchair ergometer, followed by 15 min of passive recovery in cool ambient conditions (20.6 ± 1.0°C and 39.6 ± 0.8% relative humidity). Core temperature (Tcore, telemetry pill), mean (Tsk) and individual skin temperatures were measured throughout. Heat storage (HS) was calculated every 15 mins. Results: Sprint speed (3.16 ± 0.59 m/s and 3.51 ± 0.44 m/s for athletes with TP and PA, respectively) was similar between groups. There were larger increases in Tcore and Tsk for athletes with TP compared to athletes with PA during exercise and recovery (p<0.05). Back, chest, lower arm and forehead skin temperatures all increased during recovery in athletes with TP compared to a decrease in athletes with PA (p<0.05). Heat storage was higher in athletes in TP (p<0.05), with end of recovery values of 3.42 ± 1.42 J.g⁻¹ and -0.51 ± 1.30 J.g⁻¹ for athletes with TP and PA, respectively. Discussion: The results of this study show that athletes with TP experienced a greater increase in Tcore and Tsk in comparison to athletes with PA. Although only exercising in cool conditions, this suggests athletes with TP have a greater inability to dissipate heat than athletes with PA during intermittent sprint exercise and recovery, possibly due to the greater loss of sweating capacity. This is also reflected by the gain in HS for athletes with TP and the net loss for athletes with PA by the end of the recovery period.

THE ROLE OF THERMAL AND TOUCH SENSE IN THE PERCEPTION OF SKIN WETNESS AT REST AND DURING EXERCISE IN DIFFERENT ENVIRONMENTS

Filingeri, D.I., Redortier, B.2, Hodder, S.I., Havenith, G.1
1: Loughborough University, Loughborough, UK. 2: Oxylane Research, (Villeneuve d’Ascq, France)

Introduction The type and amount of physical activity an individual performs is influenced by the level of comfort achievable with the surrounding environment (Kanas et al., 2012). Skin wetness has been shown to be a critical determinant of thermal and clothing comfort (Fukazawa et al., 2009). Clarifying the neurophysiological bases of wetness perception (WP) is critical to improving sporting garments’ design and thus comfort. WP seems to result from the integration of temperature (cold) and mechanical (pressure) inputs. To conclude, hypertrophy in the distal and mid part of the VL was different between the groups (ICON +2 vs. ECC +8%; ECC +7 vs. CON +11%, respectively). Discussion In terms of whole-muscle hypertrophy, despite the ~1.2 fold greater training load of the ECC group, similar increases in VOL and MVC in were found after training. However, distinct architectural changes were found for the two leading regimes: increases in VL were greater after ECC than CON while in contrast, PA increased more in CON vs. ECC. These adaptations (in accordance with (3)) reflected differences in fascicle behaviour in the two contraction modes, i.e., lengthening in ECC vs. shortening CON. When examining regional hypertrophy, the changes in architecture induced by the two regimes induced preferential growth in the distal region of VL for ECC while for CON, VL growth occurred mainly at mid-belly. In terms of signaling, while MAPK activation (i.e., p38MAPK, ERK1/2, p90RSK) was exclusive to ECC, neither mode affected AKT-mTOR or inflammatory signaling. To conclude, hypertrophy in response to CON vs. ECC yields distinct architectural and regional adaptations, rather than in whole-muscle growth despite the greater loading intensity of ECC protocol. These morphologic and architectural changes to ECC vs. CON were associated with discrete acute fascicle behaviour, which we speculate to underlie the preferential activation of MAPK signaling, and perhaps the ensuing distinct muscle adaptations. References 1- Kehat et al. Circ Res, 2011 2- Wretman et al. J Physiol, 2001 3- Reeves et al. Exp Physiol, 2009.

ANNUAL CONGRESS OF THE EUROPEAN COLLEGE OF SPORT SCIENCE
Different studies have found compromised adaptation of strength, especially muscle power, when both strength and endurance were trained at the same time. Several strategies or mechanisms have proven effective in reducing the interference phenomenon of concurrent strength and endurance training as follows (1,4).• Short training phases (5 weeks) using highly concentrated training loads (>50% of the total training volume) and which focus on the development of only two target fitness components in each training phase (i.e. one for strength and another for endurance), result in a more effective training stimulus for the improvement of performance in highly trained athletes when compared with a more traditional training periodization approach (2).• Avoidance of the simultaneous development of muscle hypertrophy (8–10 RM) and aerobic power can reduce the interference phenomenon due to both training intensities inducing opposite adaptations, while the specific muscle groups recover for subsequent sessions of greater intensity (1,3).• The residual fatigue caused by a previous endurance session could reduce and/or impair the quantity and quality of adaptations, while the specific muscle groups recover for subsequent sessions of greater intensity (1,3).• The training to repetition failure approach speeds up recovery from strength training, allowing rowers and paddlers to perform subsequent strength training sessions of higher quality (3).References: 1. García-Pallarés J and Izquierdo M (2011). Sports Medicine. 1.41(4):329-343. 2. García-Pallarés J et al. Eur J Appl Physiol. 110(1):99-107. 3. Izquierdo-Gabarren M, et al. Med Sci Sports Exerc (2011) 42(6):1191-9. 4. García-Pallarès J et al. (2010). Med Sci Sports Exerc 42(6):1209-14.