Establishing trends in design and technology teachers’ approaches in Botswana

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/1339

Publisher: © Loughborough University

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Establishing trends in design and technology teachers’ approaches in Botswana

Olefile Bethuel Molwane
Goldsmiths, University of London, UK

Abstract

Arguably design and technology, its politics and philosophy have been chronicled in a number of journals including The Journal of Design and Technology Education, IDATER Journals, International Journal of Technology Education and other similar documents. Research has also highlighted how good practice in design and technology and creativity could be fostered amongst learners in schools.

This paper explores how teachers of design and technology in Botswana junior secondary schools construct the meaning of design and technology through their classroom actions. It establishes trends in teachers’ approaches, which have been constructed using trajectories. The paper primarily highlights how quantitative data was collected in qualitative situations and how it was analysed, looking not only at what teachers do in classrooms (qualitative) but for how long and how often (quantitative).

A case study approach using participant observation and ethnography strategies is used. This has been complemented by the use of qualitative interviewing. The findings of this paper emerge from a PhD research study that was undertaken in Botswana in 2000.

Keywords: broad descriptors, designing, pedagogy, proforma, project profile, trajectories

Introduction

Design and technology is increasingly recognised in many countries as an important aspect of a general education. The obvious economic benefits of having a technologically literate workforce have led to a number of countries (including Botswana and England) to make design and technology compulsory in state schools. The English approach to design and technology and its National Curriculum for the subject are often used as a basis for work in other countries. One illustration is that most English books on teaching design and technology are used in secondary schools in Botswana, Australia, South Africa and many other countries. The current design and technology course has its traces in the traditional technical subjects and crafts.

In a paper presented at ‘The Innovative Technologist: Education for innovation’ seminar organised by the Engineering Council in London on 27 February 2001, Kimbell and Perry (2001) considered design and technology in the knowledge economy. In this paper the authors argued about the importance of design and technology, relating to the domain of design and technology, a distinctive pedagogy inherent in design and technology, and how it empowers learners to participate meaningfully in the world they live in. Explicit in their paper is that design and technology enables us (human beings) to understand the process of change and engage in it; and that design and technology is about the future, about what might be or should be. The authors related:

“At the heart of design and technology lies a distinctive model of teaching and learning. It is project-based and involves learners taking a task from inception to completion within the constraints of time, costs and resources.’ (Kimbell and Perry, 2001)

Moreover, Shirley (2001), in a foreword by the Engineering Council, outlined that design and technology has a distinctive contribution to make in the school curriculum. Shirley further commented:

… It [referring to Kimbell and Perry paper] describes the unique characteristics which makes design and technology more than just a subject. It is a learning experience which is
eral lessons of 10 teachers in different schools. These schools were located in different geographical areas; urban and peri-urban areas, some with cosmopolitan groupings of students. This paper examines how teachers teach design and technology tasks in schools, the pedagogy used, and how this pedagogy impacts on learners’ understanding of design and technology. Key variables identified and analysed include the following:

- nature of interaction (teacher directing or supporting learning)
- focus of interaction (showing who the teacher is interacting with – whole class, individual pupils or groups)
- engagement (students’ engagement level on tasks – stationary: denoting students being off task, not engaged in design and technology activity; poddling: denoting students working at the task but not giving it full attention or energy and/or listening to the teacher; and motoring refers to students being fully engaged and committed to the task)
- content related to teachers’ teaching priorities of content areas and what students are engaged in to reflect teachers’ teaching.

These variables have been combined at different levels (two variables at a time) to form trajectories. Trends in teachers’ approaches were identified through the analysis of the trajectories.

Methodology

There are a variety of strategies used in conducting research. For the purpose of this research a case study approach was used, and employed qualitative and quantitative paradigms in collecting data (Denscombe, 1998; Robson, 1998; Cohen and Manion, 1994). The quantitative data was collected in qualitative situations and analysed, looking not only at what teachers do in classrooms (qualitative), but at the frequency and duration of interactions (quantitative). Through the ethnographic, grounded theory study, the researcher used techniques (Flick, 1998; May, 1998 and Oppenheim, 1992) which could be triangulated to check the validity of research and these are:

- participant observation
- ethnographic strategies
- use of qualitative interviews to complement the participant classroom observations and ethnography fieldwork notes.
In sampling teachers, predominantly cluster sampling was used to ensure representation of schools in urban and peri-urban areas. Within these clusters a list of teachers and schools, sampling frames, based on teacher national employment and deployment data from the Ministry of Education were used. Random sampling techniques were then used to choose the 10 teachers to be followed during the research in each of the areas. These samplings based on a combination of strategies, encompassed design and technology trained teachers, craft trained, and local and expatriate teachers. There were also variances in teachers’ teaching experiences and range of subjects taught. Furthermore, gender was seriously considered and, three female teachers were included in the study.

Year 2 of the three-year programme was chosen as a focus of study as it marks a big change in philosophy in design and technology programme from ‘Inward-facing – formative assessment and teacher controlled activities’ in Year 1 to ‘outward-facing – individualism and external assessment’ in Year 3. Each year of the three-year course has a different focus but Year 1 has a distinct emphasis focusing on knowledge and skills development, giving more freedom to the teacher. The approach changes in Years 2 and 3, which have much in common such as an emphasis on designing, and encouraging learner autonomy. Year 2 focus is on community service while the Year 3 focus is on product design and manufacture.

Data gathering techniques

As alluded to earlier, a range of techniques was used in data collection, participant observation, interviews, and fieldwork notes (ethnography).

Participant observation

A proforma or participant observation schedule was used to record teachers’ teaching practices in design and technology and also to record their assessment practices. The proforma accounted for quantitative data collection, recording interactions between the teacher and students, and content areas. It also allowed for the capturing of qualitative data in descriptive notes of what happened in class during the interactions.

Interviews

Qualitative interviews were used to establish teachers’ understanding of design and technology, and their beliefs and understanding of assessment in design and technology. The first interview, ‘Teachers’ understanding of design and technology’, was conducted at the beginning of the project while the second interview, ‘Teachers’ understanding of assessment in design and technology’, was administered at the end of the project. These two interviews based on purposive sampling were restricted to only those teachers in the study. However, the interview on ‘Teachers’ understanding of assessment in design and technology’, was also administered to three focus groups of design and technology in different geographical settings and distance apart. Teachers were selected for the focus groups from three clusters: Molepolole, Gaborone and Kanye, the three areas representing different social constructs of people and students (Rural and urban areas). In each focus group there were between 6–10 teachers with a range of different nationalities and teaching experience. Individual teacher’s interviews were tape recorded and transcribed verbatim into word processor ready for analysing using Nudist software while the focus groups interviews were audio-taped and video-taped to capture the teachers’ actions and debates during the interviews (Silverman, 1997 and 1998).

Ethnographic technique

The ethnographic data provided a wealth of information and rich data that could not be captured through classroom interactions. These were captured outside classroom activities, and provided rich qualitative data which was useful to inform classroom practices and could be triangulated or used to validate how teachers behave in class. For example, during interviews, not many teachers spoke about the impact of Examinations, Research and Testing Division’s terminal examinations as influential to the way they taught the programme. However, outside the classrooms they freely expressed and argued that the way they teach adhered to the demands of junior certificate requirements and standards, and that, hence, professional judgements (formative assessment) were jeopardised by these external factors. Also they commented on the issue of plethora of monthly tests which force them to teach for testing.

Project profiles

A series of lessons comprising a project for every individual teacher was observed for all 10 teachers in the case study over a period of time. These
lessons enabled the researcher to capture teachers’ classroom practices and were recorded on the proforma participant observation sheet to ultimately provide a project profile. Key variables included teacher directing and supporting learning (nature of interaction), teacher interaction with whole class or pupil (focus of interaction) and level of students’ engagement in task (engagement). The diagram below illustrates an example of a project profile for one of the teachers demonstrating five arbitrary phases (Phase 1 to 5) or time samples of the project.

Figure 1: Teacher 1 project profile.

For this project there were six lessons observed of teacher 1 and the overall time and length was collated and divided into five equal phases enabling the author to produce a graphical idea of how the project was conducted. It also shows the start, middle and end of the project, demonstrating the pattern of classroom activities, and level of student/teacher interaction. It is always assumed that when the activities reach the middle there should generally be a pick in these activities. The level of teacher control decreasing with the passing time of the project whiles the students’ engagement with a project rise. Therefore, in interpreting the diagram it is explicit that in Phase 2 (time sample 2) the teacher was directive towards the whole class while in Phases 3, 4 and 5 the teacher became supportive of individual pupils.

Analysing teachers’ practices data

Microsoft Excel was used to analyse quantitative data from the proforma classroom instrument (recording figures) and entering fieldnotes (qualitative data). Transcribed verbatim interviews were analysed using NUD•IST software which was also used to analyse qualitative data. Within the qualitative data, the author coded the interviews, provided definitions and built the index tree.

Analysing proforma data

Initially, individual teacher templates in Excel were set for all 10 teachers. Then individual teacher’s lessons captured in the computer showing the total time in minutes and number of entries, e.g. 96 minutes and 48 entries for teacher 1 in Phase 1 fieldwork. All these series of lessons were further arranged chronologically into a composite file. Then these chronological lessons in composite file for each teacher were mapped into phases or time samples and converted into datamaps file denoting that the lessons have been merged. For example teacher 1 (T1) had 50 entries lasting 100 minutes in each phase. Each entry or interval was logged-in every two minutes. At the bottom of the datamaps were the totals of time and entries, hence 500 minutes and 250 entries for teacher 1, and under each column or category were shown the datamaps total numbers of hits or entries. These series of lessons, composite files are shown in Figure 2 as an exemplar.

Figure 2b shows individual lessons (T1.1 – T1 denoting that these are files for teacher 1 and the number after the decimal reflecting on the sequence of the lesson), composite file and datamaps. Thereafter, every teacher had an individual folder containing all individual lessons,
questions enunciated as 1.1. to 9.9 implying that there were nine main questions in the interview.

The bottom arrows are representation of threads, checking details of main interview questions, that is, what the data is saying. Once the whole tree was graphically represented (Figure 5a), the author collated the notes (Figure 5b) so that meanings could be made from the research data and triangulation of information between teachers’ understanding of design and technology and that of assessment. These would later be correlated to the classroom practices to see what information they revealed.

Establishing trends in teachers’ approaches

This section provides information on how teachers’ categories were created from Phase 1 data fieldwork raw data. To establish trends in teachers’ approaches, trajectories were used. These are profiles produced in linear form from phase plane diagrams or quadrant analysis showing teachers’ movements throughout the project from time sample (TS) 1 to the end of the project – time sample 5. The trajectories were constructed from the main variables of the study, which were combined in a sliding scale and opposite axis. For example, the trajectory of teacher 3 (Figure 6a) teaching style...
Categorisation of teachers’ teaching styles

To reiterate, the author indicated from the beginning that this paper would outline and discuss characterisation of teachers’ teaching approaches in design and technology. Thorough thought was given to teachers’ trajectories and groups of teachers’ teaching styles were created. Three groups were created under two broad categories to classify teachers’ trends in teaching approaches. The broad categories were the pedagogic analysis looking at the way teachers taught in the class and the second content analysis reflecting combined the nature of interaction (directive and supportive) and focus of interaction (whole class and pupils/group). The overall pattern illustrated how the teacher interacted with students from time sample 1 to time sample 5.

In time sample 1 and 4 of teacher 3 (Figure 3), for example, the teacher was supportive of the whole class while in time samples 2, 3 and 5 the focus was on whole class teaching, with the teacher directing learning.

The exemplar demonstrates one way in which complex data could be managed and made meaningful to researchers. The trajectories could also be used together with broad descriptors of the project, not discussed in this paper, to describe what was happening at a particular time. Other sets of trajectories were produced in searching for the teachers’ teaching styles. The first is demonstrated in Figure 6a. The second was produced by combining the nature of interaction variable with engagement variable (stationary, poddling and motoring). The third was the focus on interaction (whole class, pupils or groups) with engagement. The research data revealed that while the teacher was supportive towards the whole class in TS1 (Figure 6b), most students were poddling i.e. not fully engaged in any task.

Teachers’ trajectories showed a contrast in teachers’ trends in teaching styles (Figures 7a and 7b representing teacher 6 and teacher 8 respectively) as demonstrated by pedagogic trajectories.

Categorisation of teachers’ teaching styles

To reiterate, the author indicated from the beginning that this paper would outline and discuss characterisation of teachers’ teaching approaches in design and technology. Thorough thought was given to teachers’ trajectories and groups of teachers’ teaching styles were created. Three groups were created under two broad categories to classify teachers’ trends in teaching approaches. The broad categories were the pedagogic analysis looking at the way teachers taught in the class and the second content analysis reflecting
The pedagogic analysis and content analysis were used to select four teachers for the Phase 2 fieldwork, which was conducted between September and December 2000. This was done through progressive focusing (ethnography) based on grounded theory. As in Phase 1 of the study the sample of teachers was relatively large, portraying the kind of teaching in Botswana junior secondary schools. Phase 2 looked at the teachers’ assessment practices predominantly.

Findings

Classroom practices

The findings of the study suggest that teachers are whole class practitioners with an inclination towards whole class teaching (as revealed by the chart in Figure 8). This has been elicited from teachers’ interactions, content approach and classroom observations. The practice emerges from teachers spending much of their time on talking about design and technology rather than engaging students in meaningful learning. Within the cohort of teachers in the sample are those teachers who are developing understanding of design and technology conceptually, being ‘talkers of the subject’, and some who are developing a good practice in design and technology. Then, there is a traditional craft oriented group whose aim is on specific skills development rather than generic skills.

Interviews

The initial analysis of interviews revealed that the majority of teachers have an awareness and a fair
understanding of design and technology though some still regard it as product-based. All of the teachers had a good understanding of the purposes of assessment in design and technology. The interviews analysis has been used to understand and confirm teachers’ groupings (pedagogic analysis and content analysis). However, in establishing the impact that the assessment of projects and aggregation of grades (predominantly monthly tests) have on the teaching of design tasks, it was concluded that teachers are focusing on an ‘itemised curriculum’ (monthly tests rather than a generic skills – development process) pragmatically, without a holistic view of the tasks. What remains is to establish the relationship between teachers’ beliefs and understanding of design and technology and their assessment of their everyday classroom practices. These would be further triangulated using the ethnographic field notes.

Conclusion

If teachers are whole class practitioners in their classroom operations as revealed by this research, are they teaching design and technology? Is this what design and technology is all about? This seems to contradict the essence and definitions of design and technology offered at the beginning of the paper, it being a process-driven model of technology. The findings therefore suggest and call for in-depth research on how teachers’ construct design and technology, how they construct assessment as well as how good practice in design and technology could be developed. It is through this construct link and identification of the weakest link in the practices that teachers can be helped to become better teachers of design and technology. Building on the top-up construct rather than the trickle down syndrome where everything would be imposed explicitly and otherwise on teachers would be a helpful approach. Teachers’ professional judgements, values and appreciation should be recognised.

The strategies used in this study illustrate one way in which research can contribute towards developing teachers’ understanding of design and technology and how their classroom actions could be informed. It is not a panacea, but an alternative research approach towards enhancing capability in teaching of design and technology in schools.

References

