Nonuniform self-organized dynamical states in superconductors with periodic pinning

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: MISKO, V.R. ... et al., 2006. Nonuniform self-organized dynamical states in superconductors with periodic pinning. Physical Review Letters, 96, 127004

Additional Information:

• This article has been published in the journal, Physical Review Letters [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRL/v96/e127004.

Metadata Record: https://dspace.lboro.ac.uk/2134/1351

Publisher: © American Physical Society

Please cite the published version.
Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

Vyacheslav R. Misko,1,2,3 Sergey Savel’ev,1,4 Alexander L. Rakhmanov,1,5 and Franco Nori1,2

1Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
2MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
3Department of Physics, University of Antwerpen (CGB), B-2020 Antwerpen, Belgium
4Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom
5Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

(Received 26 June 2005; published 29 March 2006)

We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures.

DOI: 10.1103/PhysRevLett.96.127004

PACS numbers: 74.25.Qt

Semiconductor devices [1] exhibiting negative differential resistivity (NDR) and conductivity (NDC) have played a very important role in science and technology. These useful devices include [1]: Gunn effect diodes, p-n-p-n-junctions, etc. Here we study superconducting analogs of these semiconductor devices. Table I briefly compares NDR in superconductors, semiconductors, plasmas, and manganites. Conceptually, the nonuniform self-organized structures (e.g., filaments and overheated domains with higher or lower electric fields) are related for superconductors, plasmas, and semiconductors. However, the physical mechanism giving rise to the instability of the homogeneous state can be different in each case.

The magnetic flux behavior in superconductors with artificial pinning sites has attracted considerable attention due to the possibility of constructing samples with desired properties [9–13]. Among such systems, samples with periodic arrays of pinning sites (PAPS) are studied intensely because advanced fabrication techniques allow to design well-defined periodic structures with controlled microscopic pinning parameters. For such systems, Ref. [14] has revealed the existence of several dynamical vortex phases, which are similar to the ones shown in the inset of Fig. 1. At low current density j, the vortices are pinned and their average velocity, \bar{v}, is zero (phase I). Here $\bar{v} = N v = \sum_i v_i \cdot x$ is the average vortex velocity in the x direction. At higher j, interstitial vortices start to move and the flux velocity increases with the drive (phase II). Then, a sharp jump in $\bar{v}(j)$ occurs since a fraction of the vortex-depinned and a very disordered uniform phase arises (phase III). This phase is analogous to the \textit{uniform electron motion in semiconductor devices}. After increasing the applied current j (for superconductors) or the applied voltage (for semiconductors), the vortex (electron) velocity shows a remarkable and nonintuitive sudden drop (i.e., the velocity \textit{drops} even though the applied force \textit{increases}). Indeed, when j exceeds a threshold value, only incommen-
the conditions under which the VI curve has a NDR region of either S type or N type, or both. We discuss the effect of the shape of the NDR on the vortex and current flow. We argue that the coexistence of the NDR of both, S and N types, gives rise to the macroscopically nonuniform self-organized dynamical structures in the flux flow regime.

We numerically integrate the two-dimensional overdamped equations of motion [14,17,18] for the flux lines driven by the current j, in the x direction over a square PAPS with lattice constant a: $\eta\mathbf{v}_i = \mathbf{F}^{pv}_{i} + \mathbf{F}^{iv}_i + \mathbf{F}^{d}_i$. Here η is the flux flow viscosity [15], \mathbf{v}_i is the velocity of ith vortex, \mathbf{F}^{pv}_{i} is the force acting on the ith vortex per unit length due to the interaction with other vortices, \mathbf{F}^{iv}_i is the ith vortex-pin interaction, $\mathbf{F}^{d}_i = j\phi_0/c$ is the driving force, and ϕ_0 is the flux quantum. The thermal fluctuation contribution to the force, \mathbf{F}^{η}_{i}, satisfies: $\langle F^{\eta}_{i}(t)\rangle_i = 0$ and $\langle F^{\eta}_{i}(t)F^{\eta}_{j}(t')\rangle_i = 2\eta k_B T \delta_{ij} \delta(t-t')$.

The vortex-vortex interaction is modeled by $\mathbf{F}^{pv}_{i} = \left[\phi_0^2/8\pi^3\lambda^3(T)\right] \sum_{j=1}^{N_v} K_1(|\mathbf{r}_i - \mathbf{r}_j|/\lambda(T))\mathbf{r}_{ij}$. K_1 is the modified Bessel function, the summation is performed over the positions \mathbf{r}_i of N_v vortices in the sample, and $\mathbf{r}_{ij} = (\mathbf{r}_i - \mathbf{r}_j)/|\mathbf{r}_i - \mathbf{r}_j|$. The temperature dependence of the penetration depth λ is approximated as $\lambda(T) = \lambda_0(1 - T^2/T_c^2)^{-1/2}$. The Ginzburg-Landau-Andrada formula for $H_{c2}(T)$ is used and we assume that the ratio $\kappa_{GL} = \lambda/\xi$ is temperature independent (here ξ is the coherence length). The pinning is modeled as N_p parabolic wells located at positions $\mathbf{r}_k^{(p)}$.

The pinning force per unit length is $\mathbf{F}^{iv}_i = (F_p/T/r_p) \times \sum_{k=1}^{N_p} |\mathbf{r}_i - \mathbf{r}_k^{(p)}| \Theta(|\mathbf{r}_i - \mathbf{r}_k^{(p)}/|\lambda(T)|) F^{iv}_{ik}$, where r_p is the range of the pinning potential, Θ is the Heaviside step function, and $\mathbf{r}_k^{(p)} = (\mathbf{r}_i - \mathbf{r}_k^{(p)})/|\mathbf{r}_i - \mathbf{r}_k^{(p)}|$. We estimate the maximum pinning force, $F_p = F_p(T)$, as $H_c^2 \xi^2/r_p$ and, thus, $F_p(T) = F_p(1 - T^2/T_c^2)$.

For brevity, the simulations shown here are for $18 \times 12 \Lambda_0^2$ periodic cells and at magnetic fields near the first matching field, $B_\phi = \phi_0/a^2$, where $N_p = N_v$. First, we start with a high-temperature vortex liquid. Then, the temperature is slowly decreased down to $T = 0$. When cooling down, vortices adjust themselves to minimize their energy, simulating field-cooled experiments. Then we in-

![FIG. 1 (color online). The average vortex velocity $\bar{v} \simeq E$ vs current j for $B/B_\phi = 1.074$, $r_p = 0.2\Lambda_0$, and $F_p/F_0 = 2$ for increasing (red open circles) and for decreasing (blue open squares) j. State A is unstable and the sample divides into filaments, some in states B and some in C. State C is also unstable. The corresponding stable states are on the lower (point E) and on the upper (point D) VI-curve branches. Inset: VI curve when no heating effects are taken into account.](127004-2)
crease the driving current and compute the average vortex velocity \(\bar{v}(j) \).

The average power of Joule heating per unit volume is \(jE = j\dot{B}/c \). We assume that the temperature relaxation length is larger than any local scale and the sample thickness. Under such conditions, the local temperature increase due to vortex motion can be found from the heat balance equation [2]:
\[
h_0 S(T - T_0) = \dot{v}jBV/c,
\]
where \(h_0 \) is the heat transfer coefficient, \(T_0 \) the ambient temperature, and \(S \) and \(V \) are the sample surface and volume. Further, we shall assume that \(T_0 \ll T_c \) and neglect \(T_0 \). We define the dimensionless driving force as \(f_d = j/j_0 \) and introduce the dimensionless parameters \(V_x = \bar{v}/v_0 \) and \(b = B/B_0 \), where \(v_0 = c^2/4\pi\kappa^2_{GL}\sigma_n\lambda_0 \), and \(j_0 = c\phi_0/8\pi^2\lambda_0^3 \). We assume that the normal state conductivity \(\sigma_n \) is temperature independent. As a result, the temperature and the driving force are related by:
\[
T/T_c = K_b V_x f_d b,
\]
where \(K_b = f_0 v_0 B_0 V/c\eta_0 T_c S \) is the ratio of the characteristic heat release to heat removal. Using the rough estimates \(\lambda_0 = 2000 \, \AA \), \(\kappa_{GL} = 100 \), \(\sigma_n = 10^{16} \, \text{s}^{-1} \), \(V/S = 1000 \, \AA \), \(T_c = 90 \, \text{K} \), \(B_0 = 500 \, \text{G} \), and \(h_0 = 1 \, \text{W/cm}^2\text{K} \), we find \(K_{ib} = 0.05-0.06 \) and \(F_{r0} \) is of the order of \(F_0 = \phi_0 j_0 /c \). In the simulations, we used \(K_{ib} = 0.0525 \).

The velocity \(\bar{v} \) versus current \(j \) (which coincides with the sample VI curve in dimensionless variables) is presented in Fig. 1 for increasing and for decreasing \(j \) if we neglect the heating effect, \(\bar{v}(j) \) has the shape shown in the inset of Fig. 1, similar to Ref. [14]. For low currents, \(j \ll 3 \), the effect of heating is negligible; for \(j \gg 3 \), the behavior of \(\bar{v}(j) \) drastically changes compared to the non-heating case shown in the inset of Fig. 1. In particular, an abrupt transition occurs between regimes IV and V. The most pronounced feature related to heating is the appearance of hysteresis in regions IV and V: the overheated vortex lattice (for decreasing \(j \)) keeps moving as a whole at lower currents than the “cold” one (for increasing \(j \)). As a result, we obtain a complex \(N- \) and \(S-\)type VI curve, characterized by two kinds of instabilities. For example, if the current density exceeds the value \(j = 3.7 \) (point A), the uniform current flow is unstable and the so-called filamentary instability [1] occurs. Consequently, the current flow breaks into supercurrent filaments, some with lower \(j_E \) (state B) and others with higher \(j_C \) (state C). The state C is, in its turn, unstable. The corresponding stable states are on the lower (E) and on the upper (D) VI-curve branches.

Note that a small amount of pinning disorder influences \(\bar{v}(j) \) and can lead to the disappearance of phase III [19]. However, the robust hysteresis, related to heating, remains.

For a sample included in an electric circuit (see inset in Fig. 2), the circuit equation is
\[
L\ddot{I} + RI + IE = U,
\]
where \(I = jA \), \(L \) and \(R \) are the inductance and resistance, \(A \) and \(l \) are the sample cross section and length, and \(U \) is a constant voltage. The circuit and Maxwell equations describe the development of small field perturbations \(\delta E \) and \(\delta B \) and current \(\delta j \). We seek perturbations of the form \(\delta E = \delta B, \delta j = \exp(\nu t/t_0) \), where \(\nu \) is the value to be found and \(t_0 = L/R \).

An instability develops if \(\text{Re}(\nu) > 0 \). In general, we should consider also the thermal equation, but for filamentary instabilities the temperature rise is not of importance. To find the instability criterion we consider \(\gamma \)-dependent perturbations [1]. In such a geometry, \(\delta E \) has only the \(x \) component, while \(\delta B \) has only the \(z \) component. Using \(\delta B = ct_0 \delta E'/\nu w \), we find from the circuit and Maxwell equations that:
\[
(\nu + 1)\delta j + \rho_c^{-1}\delta E = 0,
\]
\[
\delta E'' - \beta\delta E' - \nu t_0^{-1}\delta E = 0,
\]
where \(\gamma = \text{Re}(\nu) \), \(\delta E \) are the values averaged over the cross section, prime is differentiation over the dimensionless coordinate \(y/w \), \(w \) is the sample half-width, \(\rho_c = RA/l \), \(t_s = (4\pi\nu^2/c^2)(\delta j/\partial E) \), \(\beta = (4\pi\nu^2/c)(\delta j/\partial B) \) are parameters, which are either positive or negative depending on the part of the VI curve for given background fields \(E \) and \(B \). All quantities are averaged over a volume which includes a large number of vortices.

The first boundary condition to Eq. (2), \(\delta B(w) = -\delta B(-w) \), is obtained assuming that the applied magnetic field \(B \) is constant. From Maxwell equations we derive \(\delta B(w) = \delta B(-w) \), using these \(\delta B \)'s, and substituting \(\delta j \) from Eq. (1), we obtain the second boundary condition \(\delta E'(w) = -\gamma\nu\delta E/(\nu + 1) \), where \(\gamma = 4\pi\nu^2l/c^2AL \). Substituting the solution of Eq. (2), \(\delta E = C_1 \exp(p_1y/w) + C_2 \exp(p_2y/w) \), to the boundary conditions and requiring a zero determinant for the obtained set of linear equations for constants \(C_i \), we find the equation for the eigenvalues \(\nu \)

\[
\begin{vmatrix}
 p_2 + \frac{\gamma\nu}{(\nu + 1)p_2} & p_1 & 1 \\
 \frac{\nu}{(\nu + 1)} & 1 & 0 \\
 p_1 & p_2 & p_1
\end{vmatrix} = p_1 + \frac{\gamma\nu}{(\nu + 1)p_1},
\]
where \(p_{1,2} = \beta/2 \pm \sqrt{\beta^2/4 + \nu^2 t_0} \).

For small values of \(|\delta j/\partial B| \), the solution of Eq. (3) can be found explicitly (with accuracy up to \(\beta^2 \)): \(\nu = -1 - \gamma t_0/t_s \). It follows from this relation that the instability
occurs only at the \(\text{VI} \)-curve branch with NDR, if the drop of the voltage is large: \(\frac{\partial E}{\partial j} > \rho_c \). The characteristic size of the arising filamentary structure is of the order of \(\Delta w \propto w/|j| = w/\sqrt{|\gamma + t_j/t_0|} \). If \(|\gamma t_j/t_0| \gg 1 \), the filament width is small, \(\Delta w \ll w \). Thus, the sample with NDR in the VI curve of \(S \) type divides into small filaments with different current densities (in different dynamic flux flow regimes III and IV) at \(R/\rho \ll |\partial E/\partial j| \) and \(L \ll 4\pi I/c^2 \). The obtained results are valid if \(\rho_c^{-1}|\partial E/\partial j| \gg \left[(4\pi w/c^2)j_0/\partial B^2\right] \). The instability occurs only if the left-hand side of this last inequality is higher than unity; the right-hand side is much smaller than 1 for the parameter range used above if \(w < 1 \) mm. In the stationary inhomogeneous state that arises after development of the instability, the electric field should be uniform over the sample.

A more complex dynamics appears when the VI curve has simultaneously both NDR parts of \(N \) and \(S \) types (see Fig. 2). In this case, the filaments with higher current density \(j_c \) are unstable if the system is far from the voltage-bias regime [1,2]. The instability of the filament with an \(N \)-type VI curve results in the switch of the filament into the overheat state [16] \(D \), giving rise to a nonuniform electric field distribution in the sample and, as a result, to nonzero \(B \). Thus, the state that appears after the instability develops is nonstationary. We consider two possible VI curves (type 1 red, type 2 green) shown in Fig. 2. In state \(D \) the flux lines move fast, which is accompanied with the acceleration of the flux flow in the lower-current filaments. In the nearly current-biased mode [1], if the \(\text{VI} \) curve is of type 2, the sample comes to the uniform stable state \(A' \) with the current density \(j_A \). However, if the \(\text{VI} \) curve has the form shown in the (red) curve 1, the stable uniform state with the current density \(j_A \) does not exist. In this case the high electric field state moves from point \(D \) to point \(F \) and falls down to a lower branch of the \(\text{VI} \) curve (point \(F' \)). In this state, the electric field is also nonuniform and the lower and higher resistivity states will move towards \(A \). However, this state is unstable and the cycle of transitions will be repeated \((A \rightarrow C \rightarrow D \rightarrow F \rightarrow F' \rightarrow A) \). Such a cyclical dynamic state could be realized in the form of flowing either stripes or resistive domain walls moving along the filaments.

It is important to stress that the described cyclical 5-step dynamics \((A \rightarrow C \rightarrow D \rightarrow F \rightarrow F' \rightarrow A) \) obtained for the \(IV \) curve having NDR of both \(N \) and \(S \) types cannot be realized for \(IV \) curves with either only \(N \) or only \(S \) type of NDR. The appearance of the nonstationary oscillatory regime for stationary external conditions is very unusual. This cyclic dynamics could be extended to different physical systems, e.g., plasmas or superconductors without artificial pins driven by a current flowing along the externally applied magnetic field [20]. Moreover, the predicted dynamical behavior (which can be generalized for several other systems, e.g., semiconductors) is potentially useful for the transformation of a dc input into either an ac current or a voltage output which can be controlled by the parameters of the external circuit. In a broader sense, this general class of cyclic dynamics (ac output from dc input) is also found in other important nonlinear systems, like the dc Josephson effect.

In summary, for superconductors with periodic pinning arrays with certain pinning and heat transfer characteristics, we derive \(\text{VI} \) curves with NDR of \(N \) type, \(S \) type, or both. Complex dynamics and regimes including domain structures and filamentary instabilities appear when the \(\text{VI} \) curve has both \(S \) and \(N \) types of NDR. We analyzed the self-organized nonuniform dynamical regimes for these instabilities.

This work was supported in part by ARDA and NSA under AFOSR Contract No. F49620-02-1-0334, and by the US NSF Grant No. EIA-0130383.

[19] V. R. Misko et al. (to be published).