**Organocatalysis [review article]**

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

**Citation:** BUCKLEY, B.R., 2009. Organocatalysis [review article]. Annual Reports on the Progress in Chemistry, Section B (Organic Chemistry), 105, pp. 113 - 128.

**Additional Information:**

- This is a review article published in the journal, Annual Reports on the Progress in Chemistry, Section B (Organic Chemistry) [© The Royal Society of Chemistry] and the definitive version is available at: http://dx.doi.org/10.1039/B822051B

**Metadata Record:** [https://dspace.lboro.ac.uk/2134/13930](https://dspace.lboro.ac.uk/2134/13930)

**Version:** Accepted for publication

**Publisher:** © The Royal Society of Chemistry

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
1 Organocatalytic Methods

Benjamin R Buckley

DOI: 10.1039/b822051b

Abstract
Reactions carried out with substoichiometric quantities of organic molecules as catalysts have received much attention over the past decade. This review highlights progress in 2008 towards highly enantioselective organocatalytic systems and the natural product/biologically active compounds that can be prepared using these types of processes.

1.0 Introduction

Once again the number of reports for organocatalysed reactions has grown significantly during 2008, with over 700 articles using the word organocatalysis, or one of its derivatives. As Macmillan reported in a personal account of the area organocatalysis has become an intensive area of research with over 1,500 manuscripts describing the use of organocatalysis from 1998-2008, a remarkable statistic given that there were no reports containing the word “organocatalysis” in 1995 (there was of course organocatalysis research being published but the phrase had not yet been coined). Several excellent reviews have again been reported in this highly topical area, and in fact these reviews highlight still further the tremendous amount of work being carried out as these review articles are split into discrete areas of organocatalysis. The present review covers achievements from 2008, but regrettably, with the considerable number of publications in this area, it is not possible to report every contribution to this field. In contrast to previous years this review is divided into sections according to the mode of action, followed by sections on oxidation, domino reactions, theoretical considerations and a summary of some of the elegant natural product architectures prepared by organocatalysis in 2008 (section 9.0).

2.0 Enamine Catalysis

Although the first use of this generic mode of action was reported in 2000 there continues to be a large number of reports in this area. Below are a selected set of examples. In the majority of cases this mode is catalysed by proline or proline derivatives, however, some recent reports have now applied other catalysts in this area. For example, List has reported the primary-amine-catalysed enantioselective intramolecular aldolization of a range of diones using the epiquinine derived catalyst 1 (Scheme 1). Excellent yields and ees of the α,β-unsaturated cyclic ketones were observed, and the highly enantioselective synthesis of either enantiomer of celery ketone was reported (See section 9.0).
There are still a range of useful procedures reported in 2008 using proline derivates. For example, the direct Mannich reaction using acetaldehyde has been reported by Hayashi.\textsuperscript{v}

Treatment of a range of protected imines (Bz, Boc or Ts) with acetaldehyde and the proline-derived catalyst 2 followed by reduction with lithium aluminium hydride affords a range of amino alcohols with excellent levels of enantiomeric excess and moderate to good yields (Scheme 2).

\textbf{Scheme 2} Hayashi’s Mannich mediated amino alcohol synthesis.

A highly enantioselective \textit{anti}-Mannich reaction has been reported by Melchiorre and co-workers, in which the Boc or CBZ protected imine is generated \textit{in situ}, thus obviating the need to prepare unstable intermediates and allowing the synthesis of previously unobtainable Boc and CBZ protected amino aldehydes (Scheme 3).\textsuperscript{vi} The synthetic utility of this methodology was then exemplified through the highly enantioselective synthesis of a $\beta$-lactam from 3 (Scheme 4). In a related study Melchiorre and co-workers have shown that the proline-catalysed asymmetric formal $\alpha$-amination of aldehydes is possible by the \textit{in situ} preparation of vinylogous iminium ion intermediates generated from arylsulfonyl indoles (Scheme 5).\textsuperscript{vii}

\textbf{Scheme 3} Melchiorre’s highly enantioselective \textit{anti}-Mannich reaction.
**Scheme 4** Melchiorre’s β-lactam synthesis from 3.

\[ \text{L-proline (20 mol%)} \quad \text{KF/alumina} \]
\[ \text{CH}_2\text{Cl}_2, \text{rt, 40 h} \]

R = Me, Et, iPr, PhCH₂, MeSCH₂, allyl
R₂ = Ph, 4-BrC₆H₄, 4-MeOC₆H₄, 4-MeC₆H₄, pentyl

**Scheme 5** Melchiorre’s α-amination of aldehydes.

Massi and Dondoni have reported the synthesis of a range of C-glycosyl amino acids. viii Direct α-amination of C-glycosylalkyl aldehydes with DBAD using proline as the catalyst affords a range of enantiomerically enriched hydrazines with d.e.s of greater than 95% (Scheme 6). This methodology was then extended to a variety of C-glycosylalkyl aldehydes with varying chain lengths (Figure 1).

**Scheme 6** Massi and Dondoni’s α-amination of C-glycosylalkyl aldehydes

**Figure 1** C-glycosylalkyl aldehydes with varying chain lengths prepared by Massi and Dondoni’s methodology

Jørgensen has reported an alternative to enzymatic, metal- or cinchonidine-catalysed kinetic resolution for the synthesis of 5-(trialkylsilyl)cyclohex-2-enones (Scheme 6). ix These substituted cyclohexanones have been used in the synthesis of a wide variety of natural and biologically active substances, for example, rugulosin and sarcodictyenone. Treatment of a β-ketoester and a silylated α,β-unsaturated aldehyde with the proline-
derived catalyst 2 affords the corresponding substituted cyclohexanones upon decarboxylation of the ester moiety in excellent ee and moderate to good yield.

\[
\begin{align*}
\text{R} & \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{Bu} \\
\text{SiMe}_2 \text{R}^1 & \quad \text{O} \quad \text{O} \\
\text{Catalyst 2 (10 mol%)} & \\
i) \quad \text{PhCO}_2 \text{H} (10 \text{ mol%}) \quad \text{toluene} \\
ii) \quad \text{Acid, 90 °C, toluene} \\
\end{align*}
\]

\[ \text{R} = \text{H, Me, allyl, Ph} \]
\[ \text{R}^1 = \text{Me, Ph} \]

**Scheme 6** Jørgensen’s highly enantioselective synthesis of 5-((trialkylsilyl)cyclohex-2-enones.

Hajra and Giri have developed a one-pot approach to enantiomerically enriched butyrolactones using proline as the catalyst.\(^x\) Treatment of methyl-4-oxybutyrate with an aldehyde and proline affords an initial addition product which is reduced \textit{in situ} to afford the corresponding lactone in moderate yield and excellent enantiomeric excess (Scheme 7).

\[
\begin{align*}
\text{MeO} & \quad \text{O} \quad \text{O} \\
\text{R} & \quad \text{O} \quad \text{O} \\
\text{L-Proline (20 mol%)} & \\
\text{DMF, 4 °C} & \\
\text{NaBH}_4, \text{MeOH, 4 °C – 35 °C} & \\
\end{align*}
\]

**Scheme 7** Hajra and Giri’s synthesis of butyrolactones

Gaunt has recently reported a highly enantioselective dearomatization approach to compounds such as 4 using the proline-derived catalyst 5 (Scheme 8).\(^{xi}\) Oxidation of the phenol ring in 6 followed by enamine catalysed Michael addition affords the corresponding product in excellent yield, diastereo- and enantiomeric excess. A range of ring sizes and heteroatoms are tolerated.

\[
\begin{align*}
\text{OH} & \quad \text{O} \quad \text{O} \\
\text{PhI(OAc)}_2 & \\
\text{MeOH, 0 °C - rt} & \\
\text{Catalyst X (10 mol%)} & \\
\text{Ar} & \quad \text{Ar} \\
\text{Ar} = \text{2-naphthyl} & \\
\end{align*}
\]

**Scheme 8** Gaunt’s enantioselective dearomatisation approach

### 3.0 Iminium Catalysis

As with enamine catalysis, iminium ion catalysis has been extremely well studied over the past decade, and interesting novel reports continue to be published in this area. For
example, Carter has reported the intramolecular heteroatom Michael addition, which gives rise to homoproline, pelletierine and homopipecolic acid (Scheme 9).xii A mechanistic model for the observed stereochemical outcome of the reactions was also postulated (Scheme 10).

![Scheme 9 Carter’s intramolecular heteroatom Michael addition](image1)

Scheme 9 Carter’s intramolecular heteroatom Michael addition

Lu and Deng have shown that bifunctional catalysts such as 1 are useful mediators for the aza-Michael reaction of $\alpha,\beta$-unsaturated ketones.xiii Excellent ees were obtained upon the addition of protected hydroxyl amines; removal of the O-benzyl group was effectively achieved by treatment with Raney nickel, with only minimal loss of optical purity (93% vs 90%, Scheme 11).

![Scheme 11 Lu and Deng’s aza-Michael reaction](image2)

Scheme 11 Lu and Deng’s aza-Michael reaction.

The asymmetric transfer hydrogenation of a range of $\alpha,\beta$-unsaturated aldehydes has been achieved in a water/THF mix using a resin-supported $N$-terminal prolyl peptide 7 and a Hantzch ester (Scheme 12).xiv The origin of selectivity for the catalyst is believed to be attributed to the presence of a $\beta$-turn and a polyleucine chain that provides a hydrophobic cavity in aqueous media.
As reported in volume 104, MacMillan expanded the scope of aminocatalysis (iminium or enamine catalysis) by introducing a new mode of action.\textsuperscript{i\textasciitilde xv} The intermediate enamine formed from the condensation of an aldehyde and a secondary amine can be intercepted by an oxidizing reagent (CAN) to generate a singularly occupied molecular orbital (SOMO) at nitrogen. Subsequent reaction with, for example, allylsilane affords $\alpha$-allylated aldehydes with good yields and excellent levels of enantioselectivity.

The scope of SOMO-activated reactions was expanded using a range of allylsilanes and gave rise to products of $\alpha$-arylation, $\alpha$-cyclization, and $\alpha$-enolation.\textsuperscript{xvi} MacMillan has since reported the $\alpha$-vinylation of aldehydes (Scheme 13) and the carbo-oxidation of styrenes (Scheme 14) using catalyst 8.\textsuperscript{xvii,xviii} More importantly, the MacMillan group have demonstrated that direct asymmetric alkylation of aldehydes is possible by merging photoredox catalysis with organocatalysis.\textsuperscript{xix} Excellent yields and ees have been observed for the alkylation of a variety of aldehydes and a plausible mechanism has been devised (Scheme 15).
Scheme 14 MacMillan’s carbo-oxidation of styrenes

Scheme 15 Macmillan’s photoredox/organocatalysis proposed mechanism

5.0 Hydrogen Bonding Catalysis

Over the last few years interest in hydrogen bonding catalysis has grown significantly, and several reviews on this subject have appeared. During 2008 several new systems have been developed. For example, Zhou’s glycosyl thiourea catalyst 9 was shown to be highly enantioselective for the aza-Henry reaction (Scheme 16). Dixon and co-workers have used the thiourea catalyst 10 in the highly enantioselective synthesis of both the antidepressant (R)-rolipram 11 and the selective serotonin reuptake inhibitor (3S,4R)-paroxetine 12. The key transformation steps are shown in scheme 17. Using the same catalyst the highly enantioselective synthesis of a multicyclic piperidinone was achieved (Scheme 18).
Scheme 16 Zhou’s highly enantioselective glycosyl thiourea catalyst.

Scheme 17 Dixon’s Michael adducts of malonate and nitro olefins.

Scheme 18 Dixon’s synthesis of piperidinone derivatives.

Connon has recently reported the use of urea or thiourea catalysts for the dynamic kinetic resolution (DKR) of azalactones (Table 1) and the desymmetrization of meso-anhydrides (Scheme 19). Connon also demonstrated that the DKR reaction could be carried out in one-pot from N-benzoyl aminoacids and DCC (Scheme 20).

Table 1 Connon’s dynamic kinetic resolution of azalactones
Rawal has developed a novel series of H-bonding catalysts containing a squaramide core. In comparison to the related thiourea catalysts, the squaramide H-bonding distances are approximately 0.6Å further apart; the authors believe that this could provide an interesting activation unit as squaramides are known to be bioisosteres of ureas. Preparation of the catalysts from dimethyl squarate is relatively straightforward; for example catalyst 14 was prepared in 61% yield over two steps. The catalyst provided excellent ees and yields in the asymmetric addition of 1,3-dicarbonyl compounds to nitro olefins with catalyst loadings as low as 0.5 mol% (Scheme 21).
Catalyst 14 (5 mol%) in toluene, 4Å mol sieves, 0 ºC, 2-8 h, up to 98% ee, up to 97% yield, up to 50:1 dr.

\[ R = \text{Ph, furyl, OMe, OEt, tBu}. \]
\[ R^1 = \text{H} \]
\[ R^1 + R' = -(\text{CH}_2)_3-, -\text{O}(\text{CH}_2)_2- \]
\[ R^2 = \text{Me, Ph, CH}_2\text{OMe} \]

Scheme 21 Rawal’s squaramide H-bonding catalysis

List has reported a short approach to enantiomerically enriched \( \beta^2 \)-amino acids through hydrogen bonding asymmetric transfer-hydrogenation.\(^{xxvi}\) Reaction of a nitro alkene with Jacobsen’s catalyst 15 and a Hantzsch ester affords the reduced products in up to 95% ee. Further hydrogenolysis of the nitro group with H\(_2\), palladium on charcoal affords the corresponding \( \beta^2 \)-amino acids (Scheme 22).

Scheme 22 List’s hydrogen bonding asymmetric transfer-hydrogenation

6.0 Counterion Catalysis

Jacobsen first reported the use of asymmetric counterion catalysis in 2007. Jacobsen has extended his group’s work in this area through the asymmetric addition of nucelophiles to oxocarbenium ions.\(^{xxvii}\) Using the catalyst 16, boron trichloride and a silyl ketene acetal, several isocroman derivatives were synthesized in excellent ees.

Scheme 23 Jacobsen’s asymmetric counterion catalysis.

The catalytic asymmetric aziridination of diazoacetamides and \( N \)-boc imines has been
reported by Maruoka and co-workers.xxviii The catalysts are based on axially chiral dicarboxylic acids, with catalyst 17 affording up to 99% ee and up to 70% yield. A slight drawback to the methodology is the competing formation of the unwanted side product 18 which at best can only be reduced to 10% of the final mass balance of the reaction (Scheme 24). A novel tetraaminophosphonium carboxylate catalyst 19 has been reported by Ooi to catalyse a direct Mannich-type reaction (Scheme 25).xxix Recently List has introduced counteranion-directed catalysis (see section 7.0).

Scheme 24 Maruoka’s asymmetric aziridination of diazoacetamides and N-boc imines

Scheme 25 Ooi’s direct Mannich-type reaction

7.0 Epoxidation

Deng and co-workers have reported the highly enantioselective peroxidation of α,β-unsaturated ketones.xxx The nature of the stoichiometric oxidant and the temperature of the reaction played a significant role in determining which product was formed. When using tert-butyl hydroperoxide at room temperature, the hydroperoxide addition product was the major constituent, but when using dimethylphenyl hydroperoxide as the stoichiometric oxidant and carrying the reaction out at 0 ºC, the epoxide was the major product.

List and co-workers have also reported on asymmetric epoxidation, however, their first report was restricted to cyclic α,β-unsaturated ketones.xxxi Excellent levels of enantiomeric excess were observed over a range of substrates and catalysts. In a later publication List also described independent work on the highly enantioselective peroxidation of α,β-unsaturated ketones using catalyst 20 (Scheme 26).xxxii Interestingly the stoichiometric oxidant employed, hydrogen peroxide, affords the peroxyhemiketal
product, which can either be reduced to form the hydroxyl group or treated with base to
give the epoxide. Excellent ees for the peroxyhemiketal, epoxide or hydroxyl products
were observed over a range of substrate types. In a separate publication List also reports
the highly enantioselective epoxidation of enals using chiral phosphoric acid salts using
counteranion-directed catalysis.xxxiii

Lattanzi has reported an extension to his group’s original findings on epoxidation of
chalcones using the β-amino alcohol 21 as catalyst (Scheme 27).xxxiv High ees for a
range of chalcones were observed when using this amino alcohol catalyst. Subsequent
modification of the amino alcohol structure proved fruitless, with ees in some cases being
dramatically decreased. Page and co-workers have reported several new oxidation
systems for oxaziridinium salt mediated epoxidation. Conditions employing hydrogen
peroxide as the stoichiometric oxidant and sodium carbonate to generate percarbonate
were reported to give ees of up to 56%. xxxv In a subsequent report the group also describe
an electrochemical batch system for the generation of percarbonate and persulfate;
addition of an iminium salt and alkene affords the corresponding epoxides in up to 64%
ene.xxxvi The latter system is particularly attractive as the stoichiometric oxidant can be
prepared directly without transport or storage issues. A range of simple binaphthalene
amino alcohol iminium salts has been developed by Page to give ees of up to 81%, and
Lacour has also suggested further factors that are required for high ee in the epoxidation
of alkenes when using baryl azepinium salts.xxxvii,xxxviii Shi has recently reviewed
dioxirane and iminium ion epoxidation methods.xxxix

\[
\begin{align*}
\text{Catalyst 20} & \quad \text{(10 mol%)} \\
\text{H}_2\text{O}_2 & \quad (3 \text{ equiv.)} \\
\text{dioxane, rt} & \quad \rightarrow
\end{align*}
\]

\[
\begin{align*}
\text{R1} & \quad \text{up to 95% ee} \\
\text{up to 69% yield} & \quad \text{isolatable}
\end{align*}
\]

\[
\begin{align*}
\text{1N NaOH (1 equiv.)} & \quad \rightarrow
\end{align*}
\]

\[
\begin{align*}
\text{Et}_2\text{O, rt 1 h} & \quad \uparrow 99\% \text{ ee} \\
\text{up to 90% yield} & \quad \text{isolatable}
\end{align*}
\]

\[
\begin{align*}
\text{P(OEt)}_3 & \quad (5 \text{ equiv.),} \\
0 \degree \text{C to 32 } \degree \text{C 15 h} & \quad \rightarrow
\end{align*}
\]

\[
\begin{align*}
\text{R1} & \quad \text{up to 94% ee} \\
\text{up to 59% yield} & \quad \text{isolatable}
\end{align*}
\]
Scheme 26 List’s asymmetric epoxidation

\[
\begin{align*}
R\text{O} & \quad \text{Catalyst 21 (10 mol\%)} \\
\text{TBHP} & \quad \text{hexane, rt} \\
R\text{O} & \quad \text{up to 89\% ee} \\
R & \quad \text{up to 93\% yield}
\end{align*}
\]

R = Ph, 4-BrC₆H₄, 3-MeC₆H₄
R₁ = Ph, 4-CNC₆H₄, 4-MeC₆H₄, 2-ClC₆H₄

Scheme 27 Lattanzi asymmetric epoxidation using a prolinol derived catalyst

8.0 Organocatalytic Domino Reactions

Melchiorre has recently reported the highly enantioselective iminium–enamine sequential approach to aziridines.²⁰ Initially a domino Michael-addition-intramolecular aldol sequence using hydroxyl amines and catalyst 22 afforded 5-hydroxyisoxazolidines (Scheme 28). Modification of the hydroxylamine by tosylation of the free hydroxyl group provided access to enantiomerically enriched aziridines when using catalyst 23 (Scheme 29).

Scheme 28 Melchiorre’s highly enantioselective 5-hydroxyisoxazolidine synthesis.

Scheme 29 Melchiorre’s highly enantioselective 5-hydroxyisoxazolidine synthesis.

Zhong and co-workers have reported the highly enantio- and diastereoselective tandem aminooxidation/aza-Michael reaction for the synthesis of tetrahydro-1,2-oxazines.²³ Their synthetic strategy involved the asymmetric α-hydroxylation of an aldehyde using L-proline and a suitable nitrosoamine followed by intramolecular Michael addition of the amine moiety to an activated α,β-unsaturated ester (Scheme 30).
Scheme 30 Zhong and co-workers tandem aminooxylation/aza-Michael reaction

Hong et al. have developed a highly enantio- and diastereoselective Michael-aldol condensation to afford functionalized cyclohexene derivatives (Scheme 31). Treatment of glutaraldehyde or its ketone derivatives with an arylpropionic aldehyde and catalyst 24 afforded functionalized cyclohexenes with high levels of enantio- and diastereococontrol. Application of this methodology has allowed the synthesis of the full carbon skeleton of the biologically active agent rosmadial.

Scheme 31 Hong’s Michael-aldol condensation to afford functionalized cyclohexene derivatives

9.0 Theoretical Considerations

Due to the ever-increasing popularity of organocatalysis, several groups have reported theoretical studies in this area. Most notably, Houk and co-workers, who have in the past reported theoretical studies on a range of topics including dioxirane, oxaziridine, and oxaziridinium ion catalysis, have reported on the origin of enantioselection in heteroatom-Diels-Alder reactions (Scheme 32). Calculations have allowed identification of the origin of enantioselection and the predicted outcome closely mirrored experimental results. It was found that the naphthyl-TADDOL 25 activates the carbonyl group through a cooperative hydrogen bond and the orientation of the aldehyde...
by a CH-π interaction.

![Scheme 32 Heteroatom-Diels-Alder reaction studied by Houk and co-workers](image)

Goodman has probed the mechanism of Hantzsch ester hydrogenation with BINOL-based phosphoric acids. Using a range of DFT methods the group found that the catalyst not only acts as a Brønsted acid but also establishes an interaction with the Hantzsch ester, which allowed them to explain the origin of enantioselectivity in the reaction.

Hayashi and co-workers found that B3LYP calculations allowed the discovery that the formation of the enamine intermediate in their Mannich-mediated amino alcohol synthesis (Scheme 2) is the rate determining step, and that attack of the protonated imine occurs with no activation barrier.

### 10.0 Natural Products Synthesized by Organocatalytic Reactions

Given the developments outlined in this review, it is again perhaps not surprising that there is now the capacity for organocatalysts to be applied to the total synthesis of a wide variety of natural products (Figure 2). List has reported the synthesis of both enantiomers of celery ketone. Carter has reported the intramolecular heteroatom Michael addition, which gives rise to homoproline, pelletierine and homopipeolic acid. Song *et al.* have reported the asymmetric synthesis of the antibiotic linezolid and a range of analogues utilising a aldol condensation with proline-derived catalysts. Takayama has reported the first asymmetric synthesis of the cernuine-type *lycopodium* alkaloids cernuine and cermizine D using an asymmetric α-amination approach. Kumaraswamy has applied Gaunt’s asymmetric cyclopropanation conditions in the total synthesis of eicosanoid and one of its diastereoisomers.
Figure 2 Several natural products produced using organocatalysis

9.0 Conclusion

Again the development of organocatalytic methods has grown significantly during 2008. Over the past year the development of non-metal catalysed reactions has again increased significantly. The level of enantiomeric excess and product yield obtained are now in many cases at excellent levels, with ees of over 95% commonplace. Catalyst loadings are still somewhat high when compared to transition metal catalysts, but as reported previously this can be offset, in some cases, by the actual cost of the catalyst. As we can see from the examples presented in this review, iminium ion catalysis remains one of the most extensively studied areas within organocatalysis. However, with the use of hydrogen bonding catalysts, such as thioureas, and Brønsted acid/base catalysts, and now counterion catalysis, a wide range of new organocatalytic reactions has been discovered. Overall organocatalysis looks set to again move forward with significant vigour over the coming year.

10.0 References

i Based on a ISI Web of Knowledge search on the word organocatalysis and its derivatives.


