A facile and mild synthesis of enamides using a gold-catalyzed nucleophilic addition to allenamides

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: KIMBER, M.C., 2010. A facile and mild synthesis of enamides using a gold-catalyzed nucleophilic addition to allenamides. Organic Letters, 12 (5), pp. 1128 - 1131

Additional Information:

• This article was published in the journal Organic Letters [© American Chemical Society]. The definitive version is available at: http://dx.doi.org/10.1021/ol1001494

Metadata Record: https://dspace.lboro.ac.uk/2134/13946

Version: Accepted for publication

Publisher: © American Chemical Society

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
A Facile and Mild Synthesis of Enamides using a Gold Catalyzed Nucleophilic Addition to Allenamides

Marc C. Kimber

Department of Chemistry, Loughborough University, Leicestershire LE11 3TU
M.C.Kimber@lboro.ac.uk

ABSTRACT

A mild and facile synthesis of enamides has been developed based on nucleophilic addition of electron rich aromatic and heteroaromatics to an allenamide unit catalysed by a gold salt. Yields for the transformation were between 29-98%.

Enamides have become an increasingly valuable and hence topical functional group within the synthetic community.1 They are contained in a number of natural product frameworks such as the chondramides, salicylhalamides and within cyclic peptides. They have also been used as asymmetric synthetic precursors within the context of heterocyclic and amine synthesis.2 The unique reactivity that enamides display has led to the development of a number of general and E/Z selective syntheses. To date the synthesis of enamides has often been centred around condensation of an amide equivalent with the corresponding carbonyl functionality.3 However more elaborate and novel methods such as organocuprate addition to isocyanates,4 acylation of in situ prepared imines5 and an N-acylation/Peterson elimination process6 have also been developed. Complementing these methods a number of transition metal catalyzed approaches based on C-N bond forming reactions (Pd, Cu),7 isomerizations of allyl amides (Fe, Rh, Ru),8 addition of amides to alkynes (Ru), organometallic additions to ynamides (Rh),9

Heck couplings (Pd),10 co-oligomerization of N-vinyl amides (Ru)11 and oxidative conjugate additions (Pd)12 have also been reported (Scheme 1).

In the synthesis of enamides the relationship between enamides and allenamides, both of which contain the desired sp2 carbon attached directly to the amide, has yet to be fully exploited. Allenamides represent a fascinating and versatile functional group whose chemical utility has been exploited by a number of groups.13 The chemistry in which allenamides have participated in include radical cyclizations,14 tandem epoxidation/cycloadditions,15 Pauson Khand cyclizations,16 [4+2]17 and [4+3]18 cycloadditions, acid catalyzed cyclizations /rearrangements,19 palladium mediated transformations,20 cyclopropanations,21 base catalyzed CO\textsubscript{2} capture22 and finally gold mediated transformations.23

The use of gold salts for the activation of allenamides is an attractive concept as it would negate the use of acidic conditions for allenamide activation24 and would therefore be more functional group tolerant.25 It is in this class of reactions, catalyzed by gold salts, in which we thought we could make a contribution within the context of direct intermolecular arylations (Scheme 2).

To date there have only been two reports of gold catalyzed cyclization of allenamides and in both cases the attacking nucleophile has been intramolecular and a heteroatom, forming either 2,5-disubstituted dihydrofurans23a or vinylimidazolidinones23b via a 5-exo-tet mechanism in each case. However, for the intermolecular gold catalysed addition of nucleophiles to activated allenamides there have been no reports to our knowledge.26

In the intermolecular addition there is an issue of regioselectivity (Scheme 2). Addition of the nucleophile to the terminal carbon of the gold activated allenamide I would potentially deliver enamide 2, alternatively addition to the carbon adjacent to the nitrogen would deliver the allylic amine 3. In this study we wished to explore this regioselectivity issue via the addition of carbon nucleophiles to an activated allenamide. To activate the allenamide we have chosen to utilize gold salts and the attacking nucleophiles which we selected for the study would be electron rich aromatics and heteroaromatics which we expect to add to the activated allenamides via a Friedel–Crafts type mechanism.

Our test substrate for this study would be the allenamide 5a which was conveniently synthesized in 2 steps using the method of Wei \textit{et al.} (Scheme 3). With 5a in hand, a trial reaction with 1-methylindole, 6a, in the presence of 5 mol % of \textit{in situ} prepared AuPPh\textsubscript{3}OTf in CH\textsubscript{2}Cl\textsubscript{2} was performed (Scheme 4).

\begin{thebibliography}{99}
\bibitem{17} One reviewer kindly pointed out that the intermolecular addition of HCl to a pyrazol-allene giving the pyrazol-allylchloride has been reported, Baikalova, L. V.; Zyrzyanova, I. A.; Tarasova, O. A.; Chipanina, N. N.; Sheibtd, E. Yu.; Kashik, T. V.; Afonin, A. V.; Sinegovskaya, L. M.; Vashchenko, A. V.; Trofimov, B. A. Russ. \textit{J. Gen. Chem.} \textbf{2003}, \textit{73}, 1632.
\end{thebibliography}
To our delight the starting material was consumed within 30 min and a new product was detected by tlc. This was subsequently isolated and shown to be the indole enamine 7a by a combination of 1H, 13C NMR and IR spectroscopy (Scheme 4). The spectroscopic data for 7a show, *inter alia*, a doublet at 6.80 ($J = 14.4$ Hz), double triplet at 5.01 ($J = 14.4$ and 6.8) and doublet at 3.51 ($J = 6.8$ Hz) as well as an absorbance at 1671 cm$^{-1}$ in the IR spectrum, all indicative of an E-enamine. This result confirmed that addition of the indole nucleophile occurs at the terminus of the activated allenamide as opposed to the carbon adjacent to the nitrogen.

While the yield for this transformation was adequate, we next set out to optimize our reaction conditions, the results of which are summarized in Table 1.

Table 1. Intermolecular arylation of allenamide 5a with N-methylindole 6a

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>equivalents of 6a</th>
<th>timec (h)</th>
<th>conversiond [% Yield]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPh$_3$AuOTf</td>
<td>2.00</td>
<td>0.5</td>
<td>100 [82%]</td>
</tr>
<tr>
<td>2</td>
<td>PPh$_3$AuOTf</td>
<td>1.50</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PPh$_3$AuOTf</td>
<td>1.05</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>4d</td>
<td>AgOTf</td>
<td>1.05</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>5e</td>
<td>TFA</td>
<td>1.05</td>
<td>2.0</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>PPh$_3$Au(NTf$_2$)</td>
<td>1.05</td>
<td>0.5</td>
<td>100 [83%]</td>
</tr>
<tr>
<td>7f</td>
<td>PPh$_3$Au(NTf$_2$)</td>
<td>1.05</td>
<td>1.0</td>
<td>95</td>
</tr>
</tbody>
</table>

dReactions run with 5.0 mol % of catalyst in CH$_2$Cl$_2$ at room temperature unless otherwise stated. eDetermined by disappearance of 5a by TLC analysis unless otherwise stated. fConversion was determined by 1H NMR, isolated yield in brackets. gNo consumption of starting material was seen after 16 h. h1 equivalent of acid relative to 5a. i1.0 mol % of catalyst

Variation of the number of equivalents of 6a from 2.0 to 1.05 had no effect on conversion to the desired product indicating that the reaction could be essentially carried out with equimolar amounts of the two reactants (entries 1, 2 and 3, respectively). Conducting the reaction in only the presence of AgOTf had no effect on the reaction with starting material being recovered (entry 4). TFA did promote the reaction, as expected, however the conversion was low compared to the gold catalyzed examples possibly due to product degradation, and significantly the rate of reaction was lower. Altering the gold source counter ion from OTf to (NTf$_2$) had no effect on the reaction (entry 6), also lowering the amount of gold catalyst from 5 mol % to 1 mol % had little effect on conversion but did result in increased reaction times (entry 7).

Scheme 5. Enamides synthesized from 5a

With optimised conditions for the arylation determined the scope of this transformation was then explored (Scheme 5). N-Methylindole 6a and indole 6b reacted with allenamide 5a to give the enamides 7a and 7b in good yields (entries 1 and 2). 3-Methylindole 8 gave the 2-substituted enamide 7c in modest yield with the remaining mass balance being accounted for by the N-substituted enamide (entry 3). This is where reaction has occurred through the indole NH and suggests that intermolecular enamide synthesis is attainable using heteroatoms. While anisole failed to add to allenamide 5a, the more electron rich 1,3,5-trimethoxy benzene 9 added in good yield to give 7d (entry 4). N-Methyl pyrrole 10 gave a mixture of the mono- and disubstituted enamides 7e and 7f in modest yields (entry 5). Increasing the amount of 10 relative to allenamide 5a to 2 equivalents gave exclusively the disubstituted enamide 7f in an excellent yield of 88%. Based on the result from using indole 8, tetrahydrocarbozole 11 gave exclusively the N-substituted enamide 7g in a yield of 78% (entry 6). Finally, addition of 2-methyl furan 12 gave the amide 13 in a modest yield, presumably due to a second addition of 12 to the initially formed enamide (entry 7).\(^\text{10}\)

Scheme 6. Enamides derived from chiral 5b

<table>
<thead>
<tr>
<th>entry</th>
<th>Structure</th>
<th>Enamides derived from chiral 5b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^\text{10}\)Yield is based on 2 equivalents of 10

Chiral allenamide 5b was coupled to 6a, 6b, 9 and 10 under the same catalytic gold conditions (Scheme 6). The yields mirrored that of the achiral allenamide 5a and significantly all enamides 14a-e were delivered with no racemisation of the stereogenic centre (entries 1 to 4).

A plausible mechanism for this transformation is presented in Scheme 7. Initial Au complexation to 5a could be via pathway A or B, however pathway A could be energetically unfavourable due to the formation of a primary carboxylation 17. However, both pathways A and B deliver the key intermediate conjugated acylinium 19 that can undergo 1,4-addition by a nucleophile giving 20. This then subsequently undergoes protodemetallation giving the enamide 21.

Scheme 7. Plausible mechanism

In summary we have demonstrated for the first time that the intermolecular gold catalyzed addition of electron rich aromatics and heteroaromatics to activated allenamides is regioselective and high yielding. This method delivers the desired enamides under very mild conditions, with no exclusion of air during the reaction and in very short reaction times as compared to many of the Pd, Ru, Rh and Cu coupling methods. The use of this transformation in further intermolecular transformations, multi component reactions and its use in natural product synthesis will be reported on in due course.

Acknowledgment The author thanks Loughborough University for financial support and Dr Mark Edgar (Department of Chemistry, Loughborough University) for NMR analysis.

Supporting Information Available. Experimental procedures, NMR spectra and characterization for all new materials. This material is available free of charge via the Internet at http://pubs.acs.org.

\(^\text{20}\) See structure 22 supporting information for physical data.

\(^\text{30}\) The \(^1\)H NMR spectra does indicate a small amount of the enamide is formed during the reaction, see the supporting information.