Multi-physics investigations on the dynamics of differential hypoid gears

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This article was published in the Journal of Vibration and Acoustics [© ASME] and the definitive version is available at: http://dx.doi.org/10.1115/1.4027403

Metadata Record: https://dspace.lboro.ac.uk/2134/14291

Version: Accepted for publication

Publisher: © ASME

Please cite the published version.
Multi-physics investigations on the dynamics of differential hypoid gears

M. Mohammadpour#, S. Theodossiades¹# and H. Rahnejat#

#Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Loughborough, UK

¹Corresponding Author: S.Theodossiades@lboro.ac.uk
Tel: + 44 (0) 1509 227664 Fax: + 44 (0) 1509 227648

Abstract

Vehicular differential hypoid gears play an important role on the Noise, Vibration and Harshness (NVH) signature of the drive train system. Additionally, the generated friction between their mating teeth flanks under varying load-speed conditions is a source of power loss in a drive train, whilst absorbing some of the vibration energy. The paper deals with the coupling between system dynamics and analytical tribology in a multi-physics, multi-scale analysis. Elastohydrodynamic lubrication of elliptical point contact of partially conforming hypoid gear teeth pairs with non-Newtonian thermal shear of a thin lubricant film is considered, including boundary friction as the result of asperity interactions on the contiguous surfaces. Tooth Contact Analysis (TCA) has been used to obtain the input data required for such an analysis. The dynamic behaviour and frictional losses of a differential hypoid gear pair under realistic operating conditions are therefore determined. The detailed analysis shows a strong link between NVH refinement and transmission efficiency, a finding not hitherto reported in literature.
Keywords

Hypoid gear pair dynamics, Multi-physics multi-scale analysis, Drive train NVH, Mixed elastohydrodynamics

Nomenclature:

- A_a - Asperity contact area
- A_f - Vehicle frontal area
- a - Vehicle acceleration
- b - Half amount of backlash
- C_D - Drag coefficient of vehicle
- c' - Solid thermal capacity
- c_m - Structural meshing damping
- c_{px} - Pinion bearing damping in x direction
- c_{py} - Pinion bearing damping in y direction
- c_{pz} - Pinion bearing damping in z direction
- c_{gx} - Gear bearing damping in x direction
- c_{gy} - Gear bearing damping in y direction
- c_{gz} - Gear bearing damping in z direction
- E' - Reduced elastic modulus of the contact:
 \[2/ \left(\frac{(1 - \varphi_F^2)}{E_p} + \frac{(1 - \varphi_G^2)}{E_g} \right) \]
- E_r - Reduced elastic modulus of the contact:
 \[\pi E' / 2 \]
- E_p - Young’s modulus of elasticity of the pinion
- E_g - Young’s modulus of elasticity of the gear
- $e(t)$ - Static unloaded transmission error
- F_{tr} - Transmitted force
- F_a - Axial load on bearing
- F_r - Radial load on bearing
- F_{fl} - Normal load of flank
- F_t - Total meshing load
- f_r - Total flank friction
- f_{rl} - Is the rolling resistance coefficient
- f_b - Boundary friction contribution
- f_v - Viscous friction contribution
- h_{co} - Dimensionless central film thickness
- I_p - Moment of inertia of the pinion
- I_g - Moment of inertia of the gear
- \tilde{K} - Lubricant conductivity
- K' - Surface solid conductivity
- K_n - “Inner ring - Element - Outer ring”
- nonlinear stiffness
- $k_{m}(t)$ - Meshing stiffness
- k_{px} - Pinion bearing stiffness in x direction
- k_{py} - Pinion bearing stiffness in y direction
- k_{pz} - Pinion bearing stiffness in z direction
k_{gx} - Gear bearing stiffness in x direction

k_{gy} - Gear bearing stiffness in y direction

k_{gz} - Gear bearing stiffness in z direction

M - Vehicle mass

m - Equivalent mass in the direction of the line of action

m_p - Mass of the pinion

m_g - Mass of the gear

\bar{p} - Average pressure

$R_p(t), R_g(t)$ - Pinion and gear contact radii

R_a - Aerodynamic resistance

R_{rl} - Rolling resistance

R_g - Gravitational resistance

R_t - Transmission ratio

R' - Equivalent radius of contact

T_{ap}, T_{ag} - Applied torque to the pinion and gear

T_p, T_g - Externally applied torque to the pinion and gear

T_{frp}, T_{frg} - Frictional moments at pinion and gear

U' - Speed of entraining motion

U_g - The component of gear motion along the instantaneous line of action

U_p - The component of pinion motion along the instantaneous line of action

V - Vehicle speed

W - Vehicle weight

W_a - Load carried by asperities

x_p - Pinion lateral displacement in x direction

x_g - Gear lateral displacement in x direction

y_p - Pinion lateral displacement in y direction

y_g - Gear lateral displacement in y direction

z_p - Pinion lateral displacement in z direction

z_g - Gear lateral displacement in z direction

Greek symbols:

α – Pressure viscosity coefficient

β - Average asperity tip radius

γ - Slope of the lubricant limiting shear stress-pressure dependence

η_0 - Lubricant dynamic viscosity at atmospheric pressure

θ - Angle of entraining motion

θ_p - Poisson’s ratio of the pinion material

θ_g - Poisson’s ratio of the gear material

λ - Stribeck’s oil film parameter

λ_{cr} - Critical film ratio

μ - Coefficient of friction

ν - Poisson’s ratio

ξ - Asperity density per unit area

ρ - Air density

ρ' - Solid surface density
\[\sigma = \sqrt{\sigma_1^2 + \sigma_2^2} \]

\(\sigma_2 \) - Second surface roughness \(R_a \)

\(\sigma_1 \) - First surface roughness \(R_a \)

\(\tau_0 \) - Eyring stress

\(\tau_{LO} \) - Limiting shear stress

\(\varphi \) - Bearing contact angle

\(\varphi_p \) - Pinion rotational displacement

\(\varphi_g \) - Gear rotational displacement

Subscripts:

- \(b \) - Denotes boundary contribution
- \(g \) - Denotes gear wheel
- \(j \) - Refers to a teeth pair in mesh
- \(p \) - Denotes pinion
- \(v \) - Refers to viscous shear

1. **Introduction**

Vehicle differential hypoid gears are usually subjected to varying load-speed conditions. Key concerns are transmission efficiency, refinement of Noise, Vibration and Harshness (NVH), and mitigating wear/fatigue. Multi-physics models are essential tools when investigating such multi-purpose integrated studies, because there are strong interactions between gear dynamics and contact tribology. This is mainly through generated conjunctional friction between the meshing teeth pairs. Friction is regarded as a major source of power loss in an otherwise lightly damped power train system. It consumes some of the excess engine order vibration energy, which is the underlying cause of various drive train NVH phenomena, such as transmission rattle [1] and axle whine [2]. Thus, friction consumes some energy and improves upon the lightly damped nature of the powertrain.

Dynamics of gear pairs have been extensively studied, particularly for parallel axis transmissions [3-5]. There are fewer investigations of non-parallel axis gears, such as hypoid and bevel gears. This is because of the complexity of contact kinematics and meshing characteristics. The dynamic model of rear axle gears was studied by Remmers [6] in order to predict resonant conditions. Some experiments were also conducted to confirm the coincidence of vibration peaks with the generated noise. A two degree-
freedom vibration model of a pair of bevel gears was investigated by Kiyono et al [7] for stability analysis, where the line-of-action vector was modelled using a sinusoidal form.

Abe et al [8] carried out experiments to show that that axle gear noise could be reduced by modifying the prevailing vibration mode with the addition of an inertial disk. This can be mounted onto either side of the final drive flanges. Another experimental method was proposed by Hirasaka et al [9] to study the body and driveline sensitivity to the transmission error of an axle hypoid gear pair. It was found that the dynamic mesh force was affected by the torsional vibration characteristics of the driveline system. A dynamic model of a hypoid gear set was developed by Donley et al [10], where the mesh point and line-of-action were considered as time invariant. More recently, hypoid gear kinematic models, based on the exact teeth geometry have been proposed [11-13] in order to study the gear pair dynamics with transmission error excitation and Non-Linear Time Variant (NLTV) mesh characteristics. In another work, an NLTV dynamic model of a hypoid gear pair with mesh parameters, represented by a sinusoidal form, was used to investigate the system response [14]. A multi-point mesh model was developed by Wang [15], which was used to analyse the hypoid gear dynamics. In all the above investigations, the time-dependent teeth mesh parameters were expressed in the form of either fundamental harmonics or by inclusion of a few harmonic orders.

A dynamic model including time varying contact parameters was developed by Wang et al [16]. The model took into account the backlash non-linearity. Results showed a number of interesting non-linear characteristics, such as the jump phenomenon, as well as sub-harmonic and chaotic behaviours. These characteristics were reported for lubricated contacts earlier in [17, 18], who also showed the lightly damped nature of lubricated contacts under high load, where the lubricant merely acts as an amorphous incompressible solid. A multi-body model of a TORSEN differential, considering component flexibility was presented by Virlez et al [19], comprising rigid and flexible bodies, constrained by flexible gear pair joints. The four working modes of the differential were observed with good accuracy. A new formulation for the calculation of transmission error was presented in [20], which took into account the derivative of the static
transmission error, where a parametric study of a hypoid gear pair with time variant mesh characteristics was presented.

The mechanical inefficiencies in gearing, arising from the lubricated meshing gear pairs, where a line contact footprint approximation is made with flow along the contact width was investigated [21-22]. Other researchers have used the more realistic assumption of elliptical point contact footprint in hypoid gear teeth pair meshing [23-25]. However, the input torque was relatively low, not representative of vehicle differential conditions. Also, the lubricant inlet entrainment flow vector was assumed to be along the minor axis of the contact ellipse. However, experimental evidence [26] and numerical investigations [27-29] have suggested significant side-leakage flow from the contact footprint along the major axis of the contact ellipse. The repercussions of ignoring the side leakage flow is breach of continuity of flow condition, as well as errors introduced in the evaluation of contact temperatures due to the side leakage flow out of the contact. The assumption of a line contact footprint can be considered as reasonable under conditions that promote an elliptical point contact of large aspect ratio [30]. In Kahraman et al [21, 22], Elastohydrodynamic Lubrication (EHL) was assumed for the gear meshing problems. Tooth Contact Analysis (TCA) was used for the completeness of the solution and elliptical contact conditions were assumed at relatively low contact loads. Recently, Mohammadpour et al [31] also used TCA in the EHL calculations of a hypoid gear pair with angled inlet flow and point contact assumptions. However, the reported work did not take into account the dynamics of the gear pair. In De la Cruz et al [32], a tribo-dynamic investigation was conducted for helical gears, taking into account the torsional oscillations of the gear wheels.

In this paper, a multi-physics model of differential hypoid gears is presented, incorporating the lateral/axial and torsional oscillations of the gear supporting shafts. Due to the geometric complexity of the interacting teeth surfaces, TCA is used to obtain the required gear input data (CALYX software was employed). These include the time-dependent varying geometry of contact and teeth meshing stiffness. The non-linear characteristics of the support bearings are also considered. System dynamics and analytical approach to contact tribology are coupled (tribo-dynamics). Due to the high transmitted loads, EHL elliptical point contact is assumed with non-Newtonian lubricant shear of thin films, as well as thermal effects and
interaction of real rough surfaces. The above features constitute a novel multi-physics analysis framework, which can be used to extract information about various important aspects of the differential’s operation (motion of the gear wheels, dynamic transmission error and friction) in a transient manner. This is a more comprehensive approach compared with the conventional numerical tools, which put emphasis on either the system dynamics or lubricated conjunctions along the contacting teeth flanks. The parametric study reveals potential design rules to control the characteristics of the transmitted force to the differential casing, affecting the NVH signature of the vehicle.

2. Methodology

2.1- Multi-Body model

Equations of motion:
The mechanical system of the hypoid gear pair (Fig. 1) comprises eight degrees of freedom (lateral/axial and torsional motions of the shafts). Shaft bending slope effects have not been considered due to evidence in the literature relating to their rather insignificant effects on the system dynamics. This has been demonstrated experimentally (Fujii et al. [33]) and numerically (Yinong et al. [34], Yang and Lim [35]) for similar systems. This assumption is also made considering the centred position of the gear wheel between symmetric bearings according to figure 1-a (similar to the configuration of cylindrical gears) and also relatively stiff carrier shaft of the gear, which make the bending slope even less. The point of origin O (also used in the TCA) is defined by the intersection of the pinion normal plane (containing the pinion axis) and the gear axis. The corresponding multi-body dynamics model has been developed in the commercial software ADAMS (Fig. 1), using constrained Lagrangian dynamics. The inertial properties of the mating gear pair are listed in Table 1.
The equations of motion are obtained in the following form:

$$[M]\ddot{X} + [C]\dot{X} + [K]X = F$$

where mass $[M]$, damping $[C]$ and stiffness $[K]$ matrices are:

![Figure 1. (a) The multi-body dynamics model and (b) The corresponding free body diagrams](image)

Table 1. Inertia/mass properties

<table>
<thead>
<tr>
<th>Part number</th>
<th>Part name</th>
<th>Inertia [kg m2]</th>
<th>Mass [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td>Pinion</td>
<td>1734×10^{-6}</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Gear</td>
<td>5.81×10^2</td>
<td>49.9</td>
</tr>
</tbody>
</table>
The position vector \([X]\) and excitation vector \([F]\) are:

\[
[X] = \begin{bmatrix}
\phi_p \\
\varphi_g \\
\chi_{px} \\
\chi_{py} \\
\chi_{pz} \\
x_{gz}
\end{bmatrix}
\]

\[
[F] = \begin{bmatrix}
T_p \\
-T_g \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]
contact as well. They are also calculated through TCA and introduced in the dynamics model as Fourier series. Therefore, all these terms are time (pinion angle) variants. The general form of the Fourier series expression for these variables is:

\[f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n \theta_p) + b_n \sin(n \theta_p)]. \]

These functions are represented with respect to pinion angle of rotation, using the teeth meshing period as the fundamental period for the series. The exact forms of these Fourier functions are presented in Appendix 1 for the case study examined. The remaining damping and stiffness coefficients are described in the following sections.

The model can be reduced to seven degrees of freedom, after eliminating the rigid body torsional mode [37]. The procedure is explained briefly here. Both sides of the first equation of motion are multiplied by \(\frac{R_p(t)}{I_p} \), the second equation is multiplied by \(\frac{R_g(t)}{I_g} \). After subtracting these two, a new equation of motion is obtained. Thus, the equations of motion of the seven degree-of-freedom reduced system comprise the following matrices (the general form of equations of motion is similar to the set of equations (1)):
\[[X] = \\
\begin{bmatrix}
 f(x) \\
x_{px} \\
x_{py} \\
x_{pz}
\end{bmatrix}, \quad [F] = \\
\begin{bmatrix}
 F' \\
n_x F' \\
n_y F' \\
n_z F'
\end{bmatrix}
\]

where \(m \) is the equivalent mass in the direction of the line of action:

\[m = \frac{l_x l_y}{l_x R_z + l_y R_p} \tag{2} \]

and following simplification, \(F' \) is defined as:

\[F' = ml_\text{p} \left[\frac{R_p \dot{\varphi}_p}{l_g} + \frac{R_g \dot{\varphi}_g}{l_g} - \dot{\varphi}(t) \right] \tag{3} \]

\(x \) denotes the teeth relative displacement along the instantaneous line of approach between the engaged teeth pairs. This is the Dynamic Transmission Error (DTE), hence:

\[x(t) = \int_0^t R_p \dot{\varphi}_p dt - \int_0^t R_g \dot{\varphi}_g dt - U_g + U_p - e(t) \tag{4} \]

where

\[U_g - U_p = n_x x_{gx} + n_y x_{gy} + n_z x_{gz} - n_x x_{pz} - n_y x_{py} - n_z x_{pz} \tag{5} \]

\(U_g - U_p \) represents the contribution of the supporting bearing deflections (lateral and axial motions) in DTE along the instantaneous line of action. These depend on the bearing specifications (stiffness, number of rolling elements etc.), as well as loading that originates from the flank meshing point. Equation (4) is an extension of the DTE equation used in [20], where only the torsional degrees of freedom were considered.

\(e(t) \) represents the static unloaded transmission error, which is also calculated using TCA considering almost zero applied torque and it is introduced in the model as a Fourier series. Its derivatives can be calculated using the series and are introduced in the model (again, the exact definition of the \(e(t) \) Fourier function presented in Appendix 1).

In order to take into account the non-linear effects of backlash, the piece-wise linear function \(f(x) \) has been introduced:
\[
f(x) = \begin{cases}
 x - b, & x \geq b \\
 0, & -b < x < b \\
 x + b, & x \leq -b
\end{cases}
\] (6)

\(b \) is half the total amount of backlash. There are two critical thresholds that represent severe NVH conditions. The first of these is teeth separation leading to **single-sided impacts**. This condition is defined as a combination of: \(x(t)_{\text{max}} \geq b \) and \(-b < x(t)_{\text{min}} < b\). The second - even worse condition - is when teeth exhibit **double-sided impacts**: \(x(t)_{\text{max}} \geq b \) and \(x(t)_{\text{min}} \leq -b \).

Calculation of damping coefficients:

In order to determine the contribution of structural damping in the system, the method described in [38] is used. The natural frequencies are obtained by solving the eigen-value problem (where the stiffness matrix is the result of linearization, containing only the constant coefficients of the stiffness Fourier series):

\[
(\text{Det}(K) - [M]\omega^2) = 0 \quad \text{and} \quad ([K] - [M]\omega^2)\hat{x} = 0
\] (7)

The matrix of the orthonormal eigenvectors \([\Phi]\) can be obtained using the orthogonality conditions \([\Phi]^T[M][\Phi] = I\). Finally, the damping coefficients are derived using the following expression and assumed damping ratios, according to [12] (3% in the torsional direction and 2% in lateral/axial directions):

\[
[\Phi]^T[C][\Phi] = [Z] = \begin{pmatrix}
2\zeta_1\omega_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 2\zeta_\gamma\omega_\gamma
\end{pmatrix}
\] (8)

It should be noted that in the current study, constant damping ratios are assumed for any degree of freedom as already mentioned above. Using these values and mass/stiffness data (with meshing stiffness being load-dependent), the presented method is utilized to calculate damping coefficients that are implemented in the equations of motion. These take into account the load varying operating conditions.

Bearing stiffness modelling:

The bearing stiffness is calculated, taking into account the localised Hertzian contact non-linearity [39]. The non-linear relationship between the bearing reaction force (radial and axial directions) and deflection is:
\[
\frac{F_a}{J_a(\varepsilon) \sin \phi} = K_n(\delta)^n \quad \text{and} \quad \frac{F_r}{J_r(\varepsilon) \cos \phi} = K_n(\delta)^n
\] (9)

Thus, instead of calculating the stiffness coefficients \((k_{px}, k_{py}, k_{pz}, k_{gx}, k_{gy}, k_{gz})\) in the radial and axial directions at any time step/iteration, the bearing reactions are determined based on the system dynamics (deflection at the bearing locations). The flank contact load in the lateral and axial directions is the excitation, which leads to bearing deflection and consequently to the non-linear bearing reaction force in the respective direction. This process is subjected to iteration until convergence is achieved for any given time step. In these equations, \(J_a(\varepsilon)\) and \(J_r(\varepsilon)\) are the numerically predicted integral values [39]; \(n\) is a constant equal to 10/9 for roller bearings and 3/2 for ball bearings; \(K_n\) is the non-linear stiffness of the inner ring – rolling element bearing – outer ring assembly, which depends on the geometry and material properties; \(\delta\) is the maximum bearing deflection along the contact normal vector.

2.2 - Excitation torques

The excitation \(T_i \, (i = p, g)\) in torsional directions comprises the applied torques on the pinion and the ring gear, as well as the contribution due to flank friction:

\[
T_i = T_{ai} + T_{frl}
\] (10)

The torque applied on the road wheels includes the rolling friction resistance \((R_{rl})\), aerodynamic resisting force \((R_a)\) and any grading load \((R_G)\) [40]:

\[
T_{ag} = r_t \sum F = r_t (R_a + R_{rl} + R_G)
\] (11)

where \(r_t\) is the laden dynamic tire radius and:

\[
R_a = \frac{P}{2} C_D A_f V^2, \quad R_{rl} = f_{rl} W
\] (12)

\(f_{rl}\) is the coefficient of rolling resistance and \(W\) is the vehicle weight. \(R_G\) is zero for vehicle motion on a flat road (zero grading).

The instantaneous input torque from the engine (on pinion) is defined as [36]:

\[
T_{ap} = \frac{R_p}{R_g} T_{ag} \left(1 + 0.1 cos(2R_t \varphi_p)\right)
\] (13)
where the second term in the brackets accounts for the dominant second engine order harmonic for the 4 cylinder 4-stroke diesel engine [41] considered in the current study.

The friction generated between the engaged gear teeth pairs contributes to the system excitation as an additional internal damping term. A thin elastohydrodynamic lubricant film is assumed between the meshing teeth pairs, which is subject to non-Newtonian viscous shear, supplemented by any asperity interactions (boundary friction as the result of the direct contact of surfaces). Therefore:

\[
T_{fl} = R_f f_r
\]

where the flank friction is given by:

\[
f_r = f_v + f_b
\]

\(f_v\) is the viscous friction with coefficient of \(\mu\) and normal load on the flank, \(F_{fl}\):

\[
f_v = \mu F_{fl}
\]

An analytical-experimental equation for the calculation of the viscous friction coefficient is used, considering the non-Newtonian behaviour of the lubricant and thermal effects [42]:

\[
\mu = 0.87 \alpha \tau_0 + 1.74 \frac{\tau_0}{p} \ln \left(\frac{1.2}{\frac{2K\eta_0}{1+9.6\zeta}} \right)^{1/2}
\]

where:

\[
\zeta = 4 \frac{K}{\pi h_c^2 / R} \left(\frac{\tilde{p}}{E' R' K' \rho' c' U'} \right)^{1/2}
\]

To calculate boundary friction \(f_b\), the method presented by Greenwood and Tripp [43] is used, where a Gaussian distribution of the asperity heights is assumed, with a mean radius of curvature for an asperity summit. Boundary friction comprises non-Newtonian shear of thin films, as well as adhesive elasto-plastic friction of opposing asperities:

\[
f_b = \tau_{t0} A_a + \gamma W_a
\]
\(\gamma \) is analogous to the adhesive coefficient of friction at asperity level junctions and \(\tau_{l0} \) is the lubricant limiting shear stress [42]. A share of the contact load, \(W_a \), is carried by the asperities and the total asperity contact area, \(A_a \), thus [43]:

\[
W_a = \frac{16\sqrt{2}}{15}\pi(\xi\beta\sigma)^2 \frac{E'}{\sqrt{\nu E}} AF_{S/2}(\lambda) \tag{19}
\]

\[
A_a = \pi^2(\xi\beta\sigma)^2 AF_2(\lambda) \tag{20}
\]

According to Greenwood and Tripp [43], the roughness parameter \((\xi\beta\sigma) \) is reasonably constant with values in the range of 0.03-0.05 for steel surfaces. The ratio \(\sigma/\beta \) is a representation of the average asperity slope, in the range of \(10^{-4} - 10^{-2} \) [44]. In the current study it is assumed that \(\sigma_1 = \sigma_2, \xi\beta\sigma = 0.055 \) and \(\sigma/\beta = 0.001 \).

The statistical functions \(F_2(\lambda) \) and \(F_{S/2}(\lambda) \) are expressed as [45]:

\[
F_{S/2}(\lambda) = \begin{cases}
0.004\lambda^5 + 0.057\lambda^4 - 0.296\lambda^3 + 0.784\lambda^2 - 1.078\lambda + 0.617; & \text{for } \lambda \leq \lambda_{cr} \\
0; & \text{for } \lambda > \lambda_{cr}
\end{cases} \tag{21}
\]

\[
F_2(\lambda) = \begin{cases}
-0.002\lambda^5 + 0.028\lambda^4 - 0.173\lambda^3 + 0.526\lambda^2 - 0.804\lambda + 0.500; & \text{for } \lambda \leq \lambda_{cr} \\
0; & \text{for } \lambda > \lambda_{cr}
\end{cases} \tag{22}
\]

\(\lambda = \frac{h}{\sigma} \) is the Stribeck’s oil film parameter, where \(\sigma \) is the composite root mean square roughness of the contiguous surfaces. \(\lambda_{cr} \approx 3 \) is the critical film ratio below which mixed regime of lubrication (including asperity interactions) is expected to occur.

The film thickness \(h \) is required for friction calculations. This can be obtained using an extrapolated oil film thickness expression for elliptical point contacts with angled lubricant flow entrainment [28, 29]:

\[
h_{c0}^* = 4.31U^{0.68}G^{0.49}W^{0.073} \left\{ 1 - \exp \left[-1.23 \left(\frac{R_a}{R_e} \right)^{2/3} \right] \right\} \tag{23}
\]

where, the non-dimensional groups are:

\[
W^* = \frac{\pi f l}{2E_rR_e^2} \quad U^* = \frac{\eta_0U'}{4E_rR_e} \quad G^* = \frac{2}{\pi} (E_r\alpha) \quad h_{c0}^* = \frac{h_{c0}}{R_e}
\]
and

\[\frac{1}{R_e} = \frac{\cos^2 \theta}{R_{xx}} + \frac{\sin^2 \theta}{R_{yy}} \quad \frac{1}{R_s} = \frac{\sin^2 \theta}{R_{xx}} + \frac{\cos^2 \theta}{R_{yy}} \]

2.3 Tooth Contact Analysis (TCA)

The TCA method is described in detail by Litvin and Fuentes [46]. The main points of the approach are briefly described here. The contact load \(F_C \) for all the simultaneously meshing gear teeth pairs is calculated and the data obtained include the instantaneous contact radii of curvature of the teeth surfaces, the teeth pair contact stiffness and the static transmission error. The contact load per teeth pair is a function of the dynamic response. However, its distribution among the teeth pairs in simultaneous contact is defined quasi-structurally (for an equal amount of the total contact load). A load distribution factor is calculated as a function of the pinion angle (i.e. time) for all teeth contacts. This is the ratio of the applied load \(F_C \) on a given flank under consideration to the total transmitted load \(F_t \) [21]:

\[l_f = \frac{F_C}{F_t} \] \hspace{1cm} (24)

Full details about the face hobbed, lapped hypoid gear pair used in this study are provided in Mohammadpour et al [31].

3. Results and discussion

The present work investigates the dynamics of a pair of differential hypoid gears in a light truck with a 4-cylinder, 4-stroke diesel engine. A summary of the input parameters and physical properties of the system is provided in Tables 2 - 5.

Most of the gear NVH phenomena (structure-borne noise effects) usually occur during transient conditions (acceleration/deceleration of the vehicle). Consequently, numerical results for accelerating and decelerating driving conditions are presented in this paper. Variables of particular importance are the DTE and lateral motion of the gear wheels, which are indications of the NVH signature of the assembly, as well as teeth separation phenomena, leading to loss of contact [2]. Furthermore, the variation of force
transmissibility through the bearings provides the excitation conditions that reach the differential housing. These induce structure-borne noise from the lightly damped differential housing.

Table 2. Gear pair parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pinion</th>
<th>Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teeth number</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>Facewidth (mm)</td>
<td>33.851</td>
<td>29.999</td>
</tr>
<tr>
<td>Face angle</td>
<td>29.056</td>
<td>59.653</td>
</tr>
<tr>
<td>Pitch angle</td>
<td>29.056</td>
<td>59.653</td>
</tr>
<tr>
<td>Root angle</td>
<td>29.056</td>
<td>59.653</td>
</tr>
<tr>
<td>Spiral angle</td>
<td>45.989</td>
<td>27.601</td>
</tr>
<tr>
<td>Pitch apex (mm)</td>
<td>-9.085</td>
<td>8.987</td>
</tr>
<tr>
<td>Face apex (mm)</td>
<td>1.368</td>
<td>10.948</td>
</tr>
<tr>
<td>Outer cone distance (mm)</td>
<td>83.084</td>
<td>95.598</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>24.000</td>
<td>24</td>
</tr>
<tr>
<td>Sense (Hand)</td>
<td>Right</td>
<td>Left</td>
</tr>
</tbody>
</table>

Table 3. Bearing properties

<table>
<thead>
<tr>
<th>Type</th>
<th>Tapered roller bearing (n = 10/9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (number of rolling elements)</td>
<td>14</td>
</tr>
<tr>
<td>φ (Bearing contact angle)</td>
<td>15°</td>
</tr>
<tr>
<td>K_n (inner ring - element - outer ring assembly)</td>
<td>3×10^8</td>
</tr>
<tr>
<td>Preload</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. Input operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal area</td>
<td>$2.2 , \text{m}^2$</td>
</tr>
<tr>
<td>Coefficient of rolling resistance</td>
<td>0.0166</td>
</tr>
<tr>
<td>Drag coefficient</td>
<td>0.33</td>
</tr>
<tr>
<td>Air density</td>
<td>1.22 kg/m3</td>
</tr>
<tr>
<td>Vehicle weight</td>
<td>1300 kg</td>
</tr>
<tr>
<td>Tyre (type)</td>
<td>195/65R16</td>
</tr>
</tbody>
</table>

Figure 2 depicts the DTE amplitude variation for the nominal case examined (damping ratios of 3% and 2% have been used for the torsional/lateral motion, respectively), where the maximum and minimum amplitude values are plotted for accelerating/decelerating vehicle motions. In order to provide a better physical representation of the operating conditions, the corresponding pinion torque during this speed
sweep is depicted in the appendix 2 (Fig. A1). This is calculated using equations (11) - (13) and the data in table 4.

Table 5. Physical properties of the lubricant and solids

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure viscosity coefficient</td>
<td>2.383×10^8 [Pa$^{-1}$]</td>
</tr>
<tr>
<td>Atmospheric dynamic viscosity</td>
<td>0.0171 [Pa.s]</td>
</tr>
<tr>
<td>Lubricant Eyring shear stress</td>
<td>2 [MPa]</td>
</tr>
<tr>
<td>Heat capacity of fluid</td>
<td>0.14 [J/kg*K]</td>
</tr>
<tr>
<td>Thermal conductivity of fluid</td>
<td>2000 [W/m*K]</td>
</tr>
<tr>
<td>Modulus of elasticity of contacting solids</td>
<td>210 [GPa]</td>
</tr>
<tr>
<td>Poisson’s ratio of contacting solids</td>
<td>0.3</td>
</tr>
<tr>
<td>Density of contacting solids</td>
<td>7850 [kg/m3]</td>
</tr>
<tr>
<td>Thermal conductivity of contacting solids</td>
<td>46 [W/m*K]</td>
</tr>
<tr>
<td>Heat capacity of contacting solids</td>
<td>470 [J/kg*K]</td>
</tr>
<tr>
<td>Surface roughness of solids, R_a</td>
<td>0.5 µm</td>
</tr>
</tbody>
</table>

A zero DTE value signifies the threshold of teeth separation. The latter can be observed when the meshing frequency is in the region of the system’s natural frequencies, which are presented in Table 6 (with the corresponding vehicle speed). The normalised eigenvectors (in the same Table) indicate the dominant DoF in the relevant resonant motion (highlighted in bold): i) the relative rotation of the gear teeth, ii) the pinion lateral DoF x_p and iii) the pinion axial DoF y_p. The corresponding mode shapes for each resonant condition are presented in the insets in Fig. 2. Super-harmonics of the resonant frequencies also appear in the lower intervals of the frequency spectrum.

At the resonant frequency regions the contact pressure fluctuates heavily (diminishing when teeth separation occurs). Figure 3 shows one meshing cycle of the DTE time history for the vehicle speed corresponding to the section A-A of Fig. 2. The pressure peak values are indicated for two locations of the cycle. The relatively low contact pressure is due to the relatively low applied load in section A-A characteristics. This is because of the low tractive resistance at that vehicle speed. The illustrated severe fluctuations are eventually transferred through the supporting bearings, affecting the system’s NVH characteristics. When the gear teeth are in continuous contact the pressure fluctuations are reduced, therefore fewer disturbances are transmitted through the meshing gear pair.
In Figure 4, the enlarged views of the first and second resonant regions are presented. It can be clearly seen that activation of the system’s non-linearities (gear pair - bearings) induces jump phenomena in the DTE amplitudes, which differ slightly between the decelerating and accelerating motions of the vehicle. Similar behaviour has been observed experimentally (E) and numerically (N) by a number of researchers, such as Yamada et al. [47] (E), Kahraman and Singh [48] (E) for parallel axis gears, Theodossiades and Natsiavas [37] (N) and Cheng and Lim [49] (N) in the case of spur and hypoid gears,
respectively. The information here is in line with experimental observations related to the axle whine NVH in light trucks [2].

A parametric study has been conducted for the effect of damping upon system dynamics. Figure 5 shows the DTE amplitudes, assuming the damping ratios of 1.5% and 1% for the torsional and lateral degrees of freedom, respectively [12]. It can clearly be seen (compared with Figure 2) that the maximum/minimum amplitude variations around the resonant regions exhibit stronger fluctuations, which lead to teeth separation, as well as to double-sided impacts in the most severe cases (the threshold for double-sided impacts is 150μm, being the total amount of nominal backlash). In addition, the frequency region that teeth separation occurs, occupies a larger vehicle speed range compared with the nominal case. Considering the physics of the investigated gear tribodynamics problem, both structural and lubricant damping, including friction contribute to the behaviour of the real system, absorbing some amounts of energy and consequently, smoothening the system dynamics. It should be noted that with tooth separation, conjunctional friction diminishes. Specifically, significant variations in the differential oil sump temperature conditions (30 - 40°C temperature increase) lead to altered NVH signature, as it has been observed experimentally in [2].

Table 6. Natural frequencies and mode shapes

<table>
<thead>
<tr>
<th>Natural frequencies [Hz]</th>
<th>Equivalent vehicle speed [km/h]</th>
<th>Normalised eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x</td>
<td>x_p</td>
</tr>
<tr>
<td>166.10</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>415.24</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>591.72</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>1100.40</td>
<td>212</td>
<td>1</td>
</tr>
<tr>
<td>2103.12</td>
<td>405.2</td>
<td>1</td>
</tr>
<tr>
<td>2453.34</td>
<td>472.7</td>
<td>1</td>
</tr>
<tr>
<td>2888.17</td>
<td>556.4</td>
<td>1</td>
</tr>
</tbody>
</table>
In order to investigate the effect of supporting bearing rigidity, a study for bearings of higher stiffness has been conducted. Figure 6 shows the DTE amplitude frequency spectra for the case that the bearing inner ring – rolling element - outer ring non-linear stiffness has increased by more than 50% \((K_n = 8 \times 10^8)\). All other parameters are kept constant as for the nominal case. As it can be seen, the stiffer bearings lead to more extensive teeth separation conditions (compared with the nominal case) in the vicinity of the second natural frequency, where the pinion lateral motion is dominant. This behaviour is closely related to worsening NVH performance (with teeth separation events lasting longer during the phases of acceleration).
and deceleration). Additionally, severe double-sided impact events also take place for longer periods of time.

Figure 5. Frequency spectra of the maximum and minimum DTE amplitudes (low damping)

Figure 6. Frequency spectra of the maximum and minimum DTE amplitudes (high bearing stiffness)

A comparison of the system dynamics to those of a gear pair with rotational degrees of freedom only is established through Figure 7, where the DTE amplitude frequency spectra are presented for the simplified model. Damping ratio of 3% has been assumed, as for the nominal case. It can be seen that apart from the resonant region, the simplified model gives similar results to those of a system with higher bearing
stiffness. This is an expected observation, since the purely torsional model does not allow for the same amount of energy release (in additional directions), as the model with more degrees of freedom. Nevertheless, the reduced model fails to predict double-sided impacts which occur at resonance. In addition, the torsional model cannot provide any information about the transmitted force for the purpose of any structure-borne noise calculations.

Figure 7. Frequency spectra of the maximum and minimum DTE amplitudes (torsional model)

Figure 8. Frequency spectra of the lateral motion maximum and minimum amplitudes (nominal case)
Figures 8 and 9 exhibit the lateral and axial displacements of the pinion shaft for the nominal case examined. These results generally follow the DTE variation trend. As it can be seen, the bearing is loaded in both directions near resonant frequencies. This action deteriorates the teeth separation conditions, leading to worsening NVH performance and structural excitations transmitted to the differential housing and potentially to the vehicle chassis. An additional observation is that the axial displacement is lower than the lateral motion with high amplitudes in the region of the third resonance only (where the axial motion is dominant in the corresponding mode shape).

![Figure 9. Frequency spectra of the axial motion maximum and minimum amplitudes (nominal case)](image)

An additional important output of the dynamic model is the variation of the transmitted force through the supporting bearings in lateral directions, which is presented in Figures 10 and 11. The transmitted force (F_{tr}) has been calculated using equation (9) and the corresponding damping coefficients as:

$$F_{tr} = F_{tr\text{-stiffness}} + F_{tr\text{-damping}}$$ \hspace{1cm} (25)

The jump phenomena observed in the transmitted force frequency spectra are indicative of the severity that structural vibrations are driven by the excitation conditions during vehicle speed range intervals that coincide with resonances of the system.
Figure 12 depicts the flank friction torque applied to the pinion. As expected, the graph shows zero torque values during teeth separation, which is observed in the three resonant regions. Furthermore, the peak friction torque values are particularly high near resonance and at relatively low speeds. This is due to predominance of boundary lubrication, which gives higher friction. In order to monitor the frictional losses for a complete meshing cycle, the amount of energy lost is calculated at four different vehicle speeds near/away from resonance (positions A, B, C and D of figure 12), where:

Figure 10. Frequency spectra of the maximum and minimum radial transmitted force amplitudes

Figure 11. Frequency spectra of the maximum and minimum axial transmitted force amplitudes
The results are presented in Table 7. It can be seen that although the friction torque amplitudes are higher near resonance (positions B and D), the total loss of energy is reduced when compared with that away from resonance (positions A and C). Thus, less frictional damping acts near resonance. Figures 13 and 14 exhibit the frictional torque variation on the pinion for one meshing cycle (corresponding to the vehicle speeds at A and B, respectively). The friction torque does not exhibit any direction reversals, since in hypoid gears the relative sliding motion between the teeth flanks does not reverse direction when the contact footprint crosses the mean pitch point [22, 49]. As it can be seen, friction is absent for a significant part of the cycle near resonance because of the teeth contact loss, which explains why less energy is lost in comparison with vehicle speed regions away from resonance.

Table 7. Frictional energy loss

<table>
<thead>
<tr>
<th>Vehicle speed</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictional energy loss during one meshing cycle (kJ)</td>
<td>12.75</td>
<td>7.37</td>
<td>7.15</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Figure 12. Frequency spectra of the maximum and minimum pinion friction torque.
4. Concluding remarks

Efficiency and NVH are two main concerns in hypoid gear pairs. These performance criteria can be estimated at early design stages using numerical models with integrated tribo-dynamics (multi-physics,
multi-scale analysis). The results have shown that single-sided impacts (teeth separation) can take place around resonant frequencies. With lower system damping, double-sided impacts are also possible during resonant conditions, where system non-linear behaviour is induced. On the other hand, higher supporting bearing rigidity leads to longer teeth separation and severe peak-to-peak DTE values (an indication of worsening NVH). The force transmissibility through the bearings is estimated, indicating strong correlation with modal response in the region of resonance (a key point for axle whine investigations). Finally, friction of meshing teeth pair and the associated energy loss directly affect system dynamics and signature of NVH response. Paradoxically, higher frictional losses can lead to better NVH refinement, a link that can only be ascertained through a detailed tribo-dynamic analysis.

Acknowledgements

The authors wish to express their gratitude to Dr. Sandeep Vijayakar of Advanced Numerical Solutions Inc. for supplying a licence of the CALYX software and supporting the TCA part of this work.

5- References

[29] Chittenden, R. J., Dowson, D., Dunn, J. F. and Taylor, C. M. “A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. II. General Case, with lubricant entrainment

Appendix 1: Definitions of time varying values (Fourier functions extracted from TCA)

Fourier function of \(k_m(\varphi_p) \):

\[
k_m(\varphi_p) = K0 + Kc1 \cdot \cos(w \cdot \varphi_p) + Ks1 \cdot \sin(w \cdot \varphi_p) + Kc2 \cdot \cos(2 \cdot w \cdot \varphi_p) + Ks2 \cdot \sin(2 \cdot w \cdot \varphi_p) + Kc3 \cdot \cos(3 \cdot w \cdot \varphi_p) + Ks3 \cdot \sin(3 \cdot w \cdot \varphi_p) + Kc4 \cdot \cos(4 \cdot w \cdot \varphi_p) + Ks4 \cdot \sin(4 \cdot w \cdot \varphi_p) + Kc5 \cdot \cos(5 \cdot w \cdot \varphi_p) + Ks5 \cdot \sin(5 \cdot w \cdot \varphi_p) + Kc6 \cdot \cos(6 \cdot w \cdot \varphi_p) + Ks6 \cdot \sin(6 \cdot w \cdot \varphi_p)
\]

where:

\[
w = 13
\]

\[
K0(T_p) = 5.475e7 \cdot T_p^{0.3463} \\
Kc1(T_p) = -5.978 \cdot T_p^3 + 4.706e3 \cdot T_p^2 - 8.799e5 \cdot T_p + 7.082e6 \\
Kc2(T_p) = -3.469e-1 \cdot T_p^3 + 3.1e2 \cdot T_p^2 - 7.937e4 \cdot T_p + 7.367e6 \\
Kc3(T_p) = -4.068e-1 \cdot T_p^3 + 2.893e2 \cdot T_p^2 - 4.481e4 \cdot T_p - 1.152e5 \\
Kc4(T_p) = -7.227e-2 \cdot T_p^3 + 5.579e1 \cdot T_p^2 - 9.0e3 \cdot T_p + 3.679e5 \\
Kc5(T_p) = -2.517e-2 \cdot T_p^3 + 2.047e1 \cdot T_p^2 - 4.247e3 \cdot T_p + 1.772e5 \\
Kc6(T_p) = -3.931e-2 \cdot T_p^3 + 3.51e1 \cdot T_p^2 - 8.363e3 \cdot T_p + 2.374e5 \\
Kc7(T_p) = -3.311e-2 \cdot T_p^3 + 3.03e1 \cdot T_p^2 - 7.534e3 \cdot T_p + 4.212e5 \\
Ks1(T_p) = 2.231 \cdot T_p^3 - 1.655e3 \cdot T_p^2 + 2.435e5 \cdot T_p + 5.734e6 \\
Ks2(T_p) = 4.18e-1 \cdot T_p^3 - 2.783e2 \cdot T_p^2 + 4.254e4 \cdot T_p - 2.384e6 \\
Ks3(T_p) = 2.625e-1 \cdot T_p^3 - 2.084e2 \cdot T_p^2 + 3.883e4 \cdot T_p + 5.147e5 \\
Ks4(T_p) = -1.307e-1 \cdot T_p^3 + 9.253e1 \cdot T_p^2 - 1.296e4 \cdot T_p - 8.178e5 \\
Ks5(T_p) = 7.628e-2 \cdot T_p^3 - 5.397e1 \cdot T_p^2 + 8.015e3 \cdot T_p + 4.539e5 \\
Ks6(T_p) = -1.325e-2 \cdot T_p^3 + 7.217 \cdot T_p^2 - 4.897e2 \cdot T_p - 3.688e5 \\
Ks7(T_p) = 6.722e-2 \cdot T_p^3 - 4.701e1 \cdot T_p^2 + 7.315e3 \cdot T_p - 7.315e4
\]

Fourier function of \(R_p(\varphi_p) \):

\[
R_p(\varphi_p) = Rp0 + Rpc1 \cdot \cos(w \cdot \varphi_p) + Rps1 \cdot \sin(w \cdot \varphi_p) + Rpc2 \cdot \cos(2 \cdot w \cdot \varphi_p) + Rps2 \cdot \sin(2 \cdot w \cdot \varphi_p) + Rpc3 \cdot \cos(3 \cdot w \cdot \varphi_p) + Rps3 \cdot \sin(3 \cdot w \cdot \varphi_p) + Rpc4 \cdot \cos(4 \cdot w \cdot \varphi_p) + Rps4 \cdot \sin(4 \cdot w \cdot \varphi_p) + Rpc5 \cdot \cos(5 \cdot w \cdot \varphi_p) + Rps5 \cdot \sin(5 \cdot w \cdot \varphi_p) + Rpc6 \cdot \cos(6 \cdot w \cdot \varphi_p) + Rps6 \cdot \sin(6 \cdot w \cdot \varphi_p) + Rpc7 \cdot \cos(7 \cdot w \cdot \varphi_p) + Rps7 \cdot \sin(7 \cdot w \cdot \varphi_p)
\]

where:

\[
w = 13; Rp0 = 0.01997; Rpc1 = 0.000123; Rps1 = 3.012e-5; Rpc2 = -6.392e-6; Rps2 = 3.672e-6; Rpc3 = -7.768e-6; Rps3 = 1.425e-5; Rpc4 = -4.872e-6; Rps4 = 5.674e-6; Rpc5 = -2.678e-6; Rps5 = 6.229e-6; Rpc6 = 1.115e-6; Rps6 = 2.342e-6; Rpc7 = 1.79e-6; Rps7 = -1.383e-6
\]

Fourier function of \(R_g(\varphi_p) \):

\[

\]
where:

\[\begin{align*}
R_0 &= Rg0 + Rgc1 \cdot \cos(w \cdot \varphi_p) + Rgs1 \cdot \sin(w \cdot \varphi_p) + Rgc2 \cdot \cos(2 \cdot w \cdot \varphi_p) + Rgs2 \cdot \sin(2 \cdot w \cdot \varphi_p) \\
&\quad + Rgc3 \cdot \cos(3 \cdot w \cdot \varphi_p) + Rgs3 \cdot \sin(3 \cdot w \cdot \varphi_p) + Rgc4 \cdot \cos(4 \cdot w \cdot \varphi_p) + Rgs4 \cdot \sin(4 \cdot w \cdot \varphi_p) \\
&\quad + Rgc5 \cdot \cos(5 \cdot w \cdot \varphi_p) + Rgs5 \cdot \sin(5 \cdot w \cdot \varphi_p) + Rgc6 \cdot \cos(6 \cdot w \cdot \varphi_p) + Rgs6 \cdot \sin(6 \cdot w \cdot \varphi_p) + Rgc7 \cdot \cos(7 \cdot w \cdot \varphi_p) + Rgs7 \cdot \sin(7 \cdot w \cdot \varphi_p)
\end{align*} \]

Fourier function of \(e(\varphi_p) \):

\[\begin{align*}
e(\varphi_p) &= e0 + ec1 \cdot \cos(w \cdot \varphi_p) + es1 \cdot \sin(w \cdot \varphi_p) + ec2 \cdot \cos(2 \cdot w \cdot \varphi_p) + es2 \cdot \sin(2 \cdot w \cdot \varphi_p) + ec3 \\
&\quad \cdot \cos(3 \cdot w \cdot \varphi_p) + es3 \cdot \sin(3 \cdot w \cdot \varphi_p) + ec4 \cdot \sin(4 \cdot w \cdot \varphi_p) + es4 \cdot \sin(4 \cdot w \cdot \varphi_p) + ec5 \\
&\quad \cdot \cos(5 \cdot w \cdot \varphi_p) + es5 \cdot \sin(5 \cdot w \cdot \varphi_p) + ec6 \cdot \cos(6 \cdot w \cdot \varphi_p) + es6 \cdot \sin(6 \cdot w \cdot \varphi_p) + ec7 \\
&\quad \cdot \cos(7 \cdot w \cdot \varphi_p) + es7 \cdot \sin(7 \cdot w \cdot \varphi_p)
\end{align*} \]

where:

\[\begin{align*}
w &= 13; \quad e0 = 0.9598e - 7; \quad ec1 = -6.634e - 7; \quad es1 = 1.532e - 7; \quad ec2 = -1.108e - 7; \quad es2 = -2.445e - 8; \quad ec3 = 3.637e - 8; \quad ec4 = -2.201e - 9; \quad es4 = -3.548e - 8; \quad ec5 = 8.653e - 9; \quad es5 = 1.695e - 8; \quad ec6 = -8.925e - 9; \quad es6 = -5.551e - 9; \quad ec7 = 3.186e - 9; \quad es7 = 7.259e - 9;
\end{align*} \]

Fourier function of \(n_x(\varphi_p) \):

\[\begin{align*}
n_x(\varphi_p) &= nx0 + nxcl \cdot \cos(w \cdot \varphi_p) + nxs1 \cdot \sin(w \cdot \varphi_p) + nxn2 \cdot \sin(2 \cdot w \cdot \varphi_p) \\
&\quad + nxn3 \cdot \sin(3 \cdot w \cdot \varphi_p) + nxn4 \cdot \sin(4 \cdot w \cdot \varphi_p) + nxn5 \cdot \sin(5 \cdot w \cdot \varphi_p) + nxn6 \cdot \sin(6 \cdot w \cdot \varphi_p)
\end{align*} \]

where:

\[\begin{align*}
w &= 13; \quad nx0 = -0.6384; \quad nxcl = 0.0005148; \quad nxs1 = 0.001959; \quad nxn2 = -0.0002453; \quad nxn3 = -0.0002076; \quad nxn4 = 5.931e - 5; \quad nxn5 = 0.0001109; \quad nxn6 = -2.076e - 5; \quad nxn7 = 1.633e - 5; \quad nxn8 = -2.095e - 6; \quad nxn9 = 2.445e - 5; \quad nxn10 = -2.252e - 5; \quad nxn11 = 1.952e - 5; \quad nxn12 = -1.722e - 6;
\end{align*} \]

Fourier function of \(n_y(\varphi_p) \):

\[\begin{align*}
n_y(\varphi_p) &= ny0 + nycl \cdot \cos(w \cdot \varphi_p) + nys1 \cdot \sin(w \cdot \varphi_p) + nyc2 \cdot \cos(2 \cdot w \cdot \varphi_p) + nys2 \cdot \sin(2 \cdot w \cdot \varphi_p) \\
&\quad + nyc3 \cdot \cos(3 \cdot w \cdot \varphi_p) + nys3 \cdot \sin(3 \cdot w \cdot \varphi_p) + nyc4 \cdot \sin(4 \cdot w \cdot \varphi_p) + nys4 \cdot \sin(4 \cdot w \cdot \varphi_p) \\
&\quad + nyc5 \cdot \cos(5 \cdot w \cdot \varphi_p) + nys5 \cdot \sin(5 \cdot w \cdot \varphi_p) + nyc6 \cdot \cos(6 \cdot w \cdot \varphi_p) + nys6 \cdot \sin(6 \cdot w \cdot \varphi_p) + nyc7 \cdot \cos(7 \cdot w \cdot \varphi_p) + nys7 \cdot \sin(7 \cdot w \cdot \varphi_p)
\end{align*} \]

where:

\[\begin{align*}
w &= 13; \quad ny0 = 0.01831; \quad nycl = -0.003291; \quad nys1 = -0.002627; \quad nyc2 = -0.001232; \quad nys2 = 5.879e - 5; \quad nycl = -0.0003643; \quad nys3 = 0.0003614; \quad nyc4 = 7.139e - 5; \quad nys4 = 0.000148; \quad nycl = 6.639e - 5; \quad nys5 = -0.0001207; \quad nycl = -5.86e - 5; \quad nycl = -0.0001038; \quad nycl = 7.847e - 5; \quad nycl = 3.232e - 6;
\end{align*} \]

Fourier function of \(n_z(\varphi_p) \):

\[\begin{align*}
n_z(\varphi_p) &= nz0 + nzc1 \cdot \cos(w \cdot \varphi_p) + nzs1 \cdot \sin(w \cdot \varphi_p) + nzc2 \cdot \cos(2 \cdot w \cdot \varphi_p) + nzs2 \cdot \sin(2 \cdot w \cdot \varphi_p) \\
&\quad + nzc3 \cdot \cos(3 \cdot w \cdot \varphi_p) + nzs3 \cdot \sin(3 \cdot w \cdot \varphi_p) + nzc4 \cdot \sin(4 \cdot w \cdot \varphi_p) + nzs4 \cdot \sin(4 \cdot w \cdot \varphi_p) \\
&\quad + nzc5 \cdot \cos(5 \cdot w \cdot \varphi_p) + nzs5 \cdot \sin(5 \cdot w \cdot \varphi_p) + nzc6 \cdot \cos(6 \cdot w \cdot \varphi_p) + nzs6 \cdot \sin(6 \cdot w \cdot \varphi_p) + nzc7 \cdot \cos(7 \cdot w \cdot \varphi_p) + nzs7 \cdot \sin(7 \cdot w \cdot \varphi_p)
\end{align*} \]
where:

\[w = 13; \quad n z 0 = -0.7695; \quad n z c 1 = -0.0005033; \quad n z s 1 = -0.00169; \quad n z c 2 = 0.0001738; \quad n z s 2 \\
= 0.0001789; \quad n z c 3 = -5.524e^{-5}; \quad n z s 3 = -8.202e^{-5}; \quad n z c 4 = 2.077e^{-5}; \quad n z s 4 \\
= -9.466e^{-6}; \quad n z c 5 = 1.898e^{-5}; \quad n z s 5 = -1.916e^{-6}; \quad n z c 6 = -2.19e^{-5}; \quad n z s 6 \\
= 1.593e^{-5}; \quad n z c 7 = -1.805e^{-5}; \quad n z s 7 = 1.92e^{-6}; \]

Appendix 2: Input torque variations

![Graph showing input pinion torque variations](image)

Figure A1. Input pinion torque for the considered case study