Microneedle assisted permeation of lidocaine HCL from a NaCMC:gel hydrogel

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: NAYAK, A., DAS, D.B. and VLADISAVLJEVIC, G.T., 2014. Microneedle assisted permeation of lidocaine HCL from a NaCMC:gel hydrogel. The Third International Conference on Microneedles 2014, University of Maryland School of Pharmacy in Baltimore, Maryland, 19th - 21st May 2014, pp.44-44.

Additional Information:

- This is a conference contribution.

Metadata Record: https://dspace.lboro.ac.uk/2134/14917

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

You are free:
- to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Lidocaine hydrochloride (HCl) is a common local anaesthetic with a short time of drug action and relatively long period of sustained delivery. Additional active molecules, such as tetracaine and adrenaline, are used in topical lidocaine ointment to enhance lidocaine HCl delivery. However, these molecules compete with the injected lidocaine HCl. For example, adrenaline is likely to cause a reduced percutaneous delivery of lidocaine HCl. Microneedle assisted delivery of lidocaine HCl involves the creation of artificial pores to bypass the SC layer of skin for delivery of lidocaine HCl. Unlike topical based ointments, injectable lidocaine HCl can produce a burning sensation and is suitable for less sustained percutaneous delivery. However, the time delay between skin surface applications of eutectic mixtures of local anaesthetics (EMLA) to permeating at a depth of 3000µm is 60 minutes. In the present work, a pre-fabricated set of stainless steel microneedles with a needle interspacing of 1100µm was impacted on dissected porcine skin section at a force of ~0.09 N per needle. A novel lidocaine hydrogel was also formulated with approximately half the mass loading of local anaesthetics contained in Lidoderm and EMLA formulation. Gelatine (gel) to sodium carboxymethylcellulose (NaCMC) mass ratio of 2.3 resulted in highly favourable zeta potentials when lidocaine HCl 2.4% w/w was loaded. Microneedle assisted lidocaine delivery of gel to NaCMC mass ratio of 2.3 resulted in crossing a minimum therapeutic level at skin depths of ~730µm before 70 minutes (Fig. 1). The lidocaine permeation flux was 1.7 times greater for gel to NaCMC mass ratio of 2.3 compared with a mass ratio of 1.6 under microneedle assisted delivery (Fig. 2).

References