Effects of simulated clothing weight distribution on metabolic rate

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a report carried out as part of the European Union project THERMPROTECT G6RD-CT-2002-00846, Report 2007-4.

Metadata Record: https://dspace.lboro.ac.uk/2134/15019

Version: Accepted for publication

Publisher: Loughborough University, Environmental Ergonomics Research Centre

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
1. Introduction

Protective clothing is worn in many industrial and military situations. Although worn for protection from one or more hazards, the clothing can have secondary effects which may limit the ability of the worker to perform the tasks required of the job. As demonstrated in the previous chapter, increases in energy consumption of 10 to 20 % are not uncommon. A small number of other results in this range have been reported in the literature along with suggestions that the additional clothing weight of the protective garments may be contributing to the observed increases. However, despite these proposals little investigation has been undertaken. In the previous chapter a plot of the percentage increases in metabolic rate in relation to the garment weight, fitted with a linear regression line resulted in a 2.7 % increase in metabolic rate per kg of clothing weight, which is considerably higher than would be predicted for carrying load.

1.1 Previous research

A number of studies have shown that various protective clothing ensembles increase the metabolic cost of walking and stepping by adding weight (Teitlebaum and Goldman 1972, Duggan 1988, Patton et al. 1995). Murphy et al. (2001) also cited the additional weight and bulkiness of chemical protective clothing contributing to performance degradation in stationary, intermittent and continuous tasks, when wearing chemical protective clothing (CPC) weighing 9.3 kg compared to standard battledress uniform.
(BDU) weighing 3.7 kg. They report the difference in energy cost between the CPC and BDU was significantly higher in the continuous tasks. Even after normalising $\dot{V}O_2$ for clothing weight, the differences between the garments for the continuous tasks was still significant. The CPC garment had little impact on the tasks of a stationary or intermittent nature. Nunneley (1989) also commented on the fact that the effect of added weight on work load depends in part upon the task, citing the example of a heavy suit posing little problem for a stationary worker but presenting a severe handicap for a firefighter climbing a ladder or stairwell.

Experimental studies have demonstrated that the metabolic cost of walking, without external load, is linearly related to the weight of the body (Goldman and Iampietro 1962; Givoni and Goldman 1971). When dressed in protective clothing the energy cost of walking is dependent on various aspects; weight, number of layers and motion restriction (Lotens 1982). Heavy fabrics will show their impact in several ways. The weight of the garment has to be carried and increases the energy cost. With clothing it is obvious that some weight is moved out on to the extremities towards the hands and feet (Lotens 1988b). Soule and Goldman (1969) have demonstrated that the metabolic cost of load carriage increases when the load is placed in the hands or on the feet, i.e. away from the centre of gravity of the body. Weight on the extremities of the body has to be accelerated and decelerated at every step, causing an even higher increase in energy cost. As Nunneley (1989) suggests, the increased metabolism when weight is carried on the legs and feet is probably due to the cyclic up-and-down displacement of the lower limbs, which produces internal heat without measurable external work.

In the Soule and Goldman study (1969) they used 20 minutes of treadmill walking at 4, 4.8 and 5.6 km/hr. Subjects carried 1) no load, 2) 4 or 3) 7 kg on each hand, 4) 6 kg on each foot or 5) 14 kg on the head. The energy cost (expressed as millilitres of oxygen per minute per kg of total weight (man+clothing+load)) of carrying the load on the hands at 4 and 4.8 km/hr was 1.4 times the expected cost per kg of the no load condition for the 4 kg
condition and 1.9 times for the 7 kg condition. At 5.6 km/hr the cost per kilogram of the 4 and 7 kg loads on the hands was 1.9 times higher. The cost expressed per kg of load carried on the feet was 4.2 times higher at 4 km/hr, 5.8 times at 4.8 km/hr and 6.3 times at 5.6 km/hr (Soule and Goldman 1969). Soule and Goldman (1969) note that loads 3), 4) and 5) represented a maximum for their subjects. Overall the loads used in their study are unrealistic in relation to clothing weights. However it is important to remember this study was carried out 35 years ago and there had been no careful comparison of the energy costs of carrying weights on the head, hands and feet. The authors describe developments in wrist / helmet radios, and helmet-suspended binoculars which explains the loads and sites they studied (Soule and Goldman 1969).

In the sports science literature a number of studies have looked at the aerobic responses of walking and running with hand, wrist and ankle weights, including Francis and Hoobler (1986), Auble et al. (1987), Graves et al. (1988) and Claremont and Hall (1988). However research findings regarding the effects of handweights are mixed. There are ambiguous findings due to variations in the combinations of walking or running speed and handweight used. The magnitude of the effect of handweights on the energy costs of exercise are most closely related to variations in arm movement patterns.

Clothing and other protective garments decrease performance due to their weight, bulkiness and friction. Clothing can therefore impair manual dexterity, decrease the range of movements and increase energetic costs of work. Each additional kg in clothing weight increases energy costs by approximately 2.7 % (previous chapter) to 3 % (Rintamaki 2005). Increased energy costs are associated with a decrease in physical performance, which is often task specific, and roughly equal to the changes in energy costs. The decrement in performance can be minimised by decreasing clothing weight and bulkiness (Rintamaki 2005).
For the military, one of the most relevant aspects of clothing is the decrement in performance but many of the trials that have tried to investigate these issues have done so in very artificial environments (Lotens 1988a). However, in general, tests show a dependency of performance on clothing / load weight and a strong correlation between performance decrement and increased energy cost (Lotens 1988a).

In summary, there has been very little investigation of the effects of load / weight distribution on energy cost, since Soule and Goldman highlighted the issue in their paper in 1969. However the loads employed in their study were extreme and planned to represent the weight of wrist and helmet mounted equipment rather than clothing.

1.2 Aims

The purpose of this trial, was to look at the effects of carrying more realistic simulated clothing weight distributions close to the body centre of gravity (using a weight belt) and at the extremities (weights worn around the wrists and ankles). The metabolic rate was measured as participants walked, stepped and completed an obstacle course.

Therefore the aims of this study are;

- To investigate the energy cost of carrying simulated clothing weight on combinations of the ankles, wrists and waist with the hypothesis that the further away from the body core the weight is positioned, the higher the resulting energy cost during work. The most expensive position for the weight in terms of energy cost is expected to be the ankles, followed by the wrists and then the waist.

- To investigate the effect of carrying the simulated clothing weights during different work modes, for example walking and completing an obstacle course. The hypothesis is that the energy cost of the extremity weight conditions (ankles and wrists) will be higher in activities requiring greater ranges of movement of the limbs.
supporting the weight, in this case the obstacle course compared to walking.
2. Methods

2.1 Participants

Eight participants (4 male, 4 female) completed the trial. They were all volunteers drawn from the student population at Loughborough University. Their physical characteristics are detailed in Table 2.1 below.

<table>
<thead>
<tr>
<th>Participant no.</th>
<th>Gender M / F</th>
<th>Age years</th>
<th>Height cm</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>29.6</td>
<td>168</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>18.8</td>
<td>183</td>
<td>106</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>26.8</td>
<td>150</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>21.9</td>
<td>171</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>21.0</td>
<td>171</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>24.3</td>
<td>180</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>21.6</td>
<td>180</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>25.3</td>
<td>172</td>
<td>70</td>
</tr>
</tbody>
</table>

Average ± SD | 23.7 ± 3.5 | 171.9 ± 10.4 | 69.5 ± 16.0 |

Participants were made fully aware in writing of all experimental details (including time demands, measurements to be taken, protocol and all other procedures). Before participating each participant was required to complete an ‘Informed Consent’ form and a ‘Generic Health Screen for Study Volunteers’ which provided information on their general health and fitness.

2.2 Weight simulations

For the waist the weight simulations were achieved using a simple diving belt and diving weights (Tribord, Decathlon). As it was easy to alter the weight, the weights could be positioned and taped in such a way that they did not move about and it was a comfortable fit around the waist. An army webbing system was also trialled however some of the weight carried in that way is supported by the shoulders and the webbing pouches were too bulky and got in the way during the crawling and bending phases of the obstacle course.
11 weight conditions were defined for the study. Weights of 2, 4, 6, 8, 10 kg were carried around the waist. 1 and 2 kg weights with velcro fastenings (Domyos, Decathlon) were carried around the ankles and wrists, the conditions being ankles 2 (1 kg on each ankle), ankles 4 (2 kg on each ankle), wrists 2 (1 kg on each wrist), wrists 4 (2 kg on each wrist), ankles/wrists 4 (1 kg on each ankle and wrist) and ankles/wrists 8 (2 kg on each ankle and wrist). For all conditions including the control (unweighted condition) participants wore lightweight tracksuit trousers and a sweatshirt which were provided, and their own trainers. See Figure 2.1 for photographs of the weight distributions.

2.3 Work modes

Participants completed 2 work modes for each condition. They were required to walk on a treadmill (h/p/cosmos mercury, Germany) for 4 minutes set at a speed of 5 km/hr, then complete 6 minutes of an obstacle course circuit. The circuit included moving crates containing 5 kg, walking over some steps, ducking and crawling under a hurdle and stepping over another hurdle. This was repeated for 6 minutes with participants speed controlled by a metronome and verbal counting. Photographs and descriptions of the work modes are provided in Chapter 2 (Methodology).

2.4 Floor plan and details

A detailed floor plan for the obstacle course is included in Figure 2.2 with the shapes described in Chapter 2 (Methodology). As previously explained participants completed the obstacle course circuit continuously for 6 minutes. The arrows show the direction of movement, following the white arrows first, participants moved the crates between the tables and floor as detailed in Table 2.3 in Chapter 2, they then stepped over the two stage step, stepped over a low hurdle, crawled under the high hurdle and touched the wall. The black arrows now show that they passed back under the high hurdle, over the low hurdle and the two stage step before walking back to the start.
Figure 2.1. Photographs of the weight distributions used.
Figure 2.2. Floor plan for the obstacle course completed. A key for the shapes used can be found in Table 2.3, Equipment section, Chapter 2. For extra explanation of boxes with dashed lines, see detailed task descriptions in Table 2.3, Equipment section, Chapter 2, including photographs.
2.5 Experimental design

The experiment was a within-subjects design with each participant acting as their own control. Three weight conditions could be completed with a control in each session. To prevent order effects a Latin Square was generated to assign the order of the weight simulations for each participant (control included in Latin Square).

2.6 Procedure

The general health and fitness of participants was checked when they arrived at the laboratory before each session. Participants were shown the obstacle course and the route was described and demonstrated to them, they also had a chance to practice before they started. When wearing the ankle and wrist weights participants were instructed to try and retain a normal gait and arm swing.

They were provided with the clothing and given time to dress and put on the heart rate monitor. They were then prepared for the first weight condition with the diving belt around the waist or wrist / ankle weights secured around the wrists / ankles.

They were instrumented with the MetaMax and instructed to sit at rest, data collection was started. Following a 5 minute seated rest, participants completed the first work mode (walking on a treadmill at 5 km/hr) which lasted 4 minutes, followed by 6 minutes of the obstacle course, moving crates, and going over and under hurdles. They were always asked for their Rate of Perceived Exertion (RPE) score in the final minute of the work periods. Participants then had 10 minutes of seated rest before the next condition. Three weight conditions and a control were completed in each session.
3. Results

3.1 Participants and environment

8 participants (4 males, 4 females, age 23.7±3.5 years, height 171.9±10.4 cm, weight 69.5±16 kg) completed the test for 11 weight conditions. The average environmental conditions for the room were 17.9±0.1 °C and 43±2 % relative humidity.

3.2 Absolute results

The absolute values for all the weight conditions for walking and the obstacle course are shown in Tables 3.1 and 3.2 respectively. For each condition average and standard deviations are given for heart rate, oxygen consumption (\(\dot{V}O_2 \)), respiratory exchange ratio (RER) and metabolic rate. The averages and standard deviations are for each condition are based on the final 2 minutes of steady state data from each of the 8 participants.

The figures in the tables are not the same as those that will be seen in subsequent graphs. The figures in the tables are an average of, for example the metabolic rate of all participants when walking with 4 kg on the wrists. However the figures in the graphs take account of the control conditions, and are based on an average of each participants % increase data (which is derived from comparing the weight condition to the control condition of the same experimental session). The graph data is included in Appendix 3.

Table 3.1. Absolute results when walking at 5 km/hr for control and 11 weight conditions.

<table>
<thead>
<tr>
<th>WALK</th>
<th>Heart Rate</th>
<th>(\dot{V}O_2)</th>
<th>RER</th>
<th>Met Rate</th>
<th>Met Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[bpm]</td>
<td>[l/min]</td>
<td></td>
<td>[W]</td>
<td>[W/m²]</td>
</tr>
<tr>
<td>control</td>
<td>ave 97</td>
<td>0.89</td>
<td>0.87</td>
<td>303.4</td>
<td>167.2</td>
</tr>
<tr>
<td></td>
<td>SD 10</td>
<td>0.18</td>
<td>0.08</td>
<td>58.4</td>
<td>23.7</td>
</tr>
<tr>
<td>waist 2</td>
<td>ave 97</td>
<td>0.89</td>
<td>0.85</td>
<td>299.7</td>
<td>165.7</td>
</tr>
<tr>
<td></td>
<td>SD 13</td>
<td>0.16</td>
<td>0.08</td>
<td>54.3</td>
<td>23.4</td>
</tr>
<tr>
<td>waist 4</td>
<td>ave 102</td>
<td>0.98</td>
<td>0.84</td>
<td>328.3</td>
<td>179.4</td>
</tr>
<tr>
<td></td>
<td>SD 6</td>
<td>0.19</td>
<td>0.11</td>
<td>59.3</td>
<td>19.7</td>
</tr>
</tbody>
</table>
Table 3.2. Absolute results when completing an obstacle course in control and 11 weight conditions.

<table>
<thead>
<tr>
<th>OBSTACLE</th>
<th>Heart Rate</th>
<th>£O2</th>
<th>RER</th>
<th>Met Rate</th>
<th>Met Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE</td>
<td>[bpm]</td>
<td>[l/min]</td>
<td></td>
<td>[W]</td>
<td>[W/m²]</td>
</tr>
<tr>
<td>control</td>
<td>ave 123</td>
<td>1.31</td>
<td>0.87</td>
<td>444.5</td>
<td>245.5</td>
</tr>
<tr>
<td></td>
<td>SD 10</td>
<td>0.21</td>
<td>0.06</td>
<td>70.1</td>
<td>27.1</td>
</tr>
<tr>
<td>waist 2</td>
<td>ave 123</td>
<td>1.33</td>
<td>0.86</td>
<td>451.6</td>
<td>250.6</td>
</tr>
<tr>
<td></td>
<td>SD 12</td>
<td>0.16</td>
<td>0.06</td>
<td>54.1</td>
<td>23.0</td>
</tr>
<tr>
<td>waist 4</td>
<td>ave 127</td>
<td>1.43</td>
<td>0.86</td>
<td>482.6</td>
<td>264.5</td>
</tr>
<tr>
<td></td>
<td>SD 11</td>
<td>0.26</td>
<td>0.06</td>
<td>85.2</td>
<td>35.1</td>
</tr>
<tr>
<td>waist 6</td>
<td>ave 133</td>
<td>1.44</td>
<td>0.88</td>
<td>490.6</td>
<td>272.4</td>
</tr>
<tr>
<td></td>
<td>SD 16</td>
<td>0.18</td>
<td>0.08</td>
<td>58.3</td>
<td>26.4</td>
</tr>
<tr>
<td>waist 8</td>
<td>ave 127</td>
<td>1.47</td>
<td>0.89</td>
<td>503.5</td>
<td>279.0</td>
</tr>
<tr>
<td></td>
<td>SD 9</td>
<td>0.21</td>
<td>0.07</td>
<td>72.0</td>
<td>30.7</td>
</tr>
<tr>
<td>waist 10</td>
<td>ave 126</td>
<td>1.47</td>
<td>0.91</td>
<td>502.6</td>
<td>279.4</td>
</tr>
<tr>
<td></td>
<td>SD 12</td>
<td>0.23</td>
<td>0.08</td>
<td>76.3</td>
<td>41.2</td>
</tr>
<tr>
<td>ankles 2</td>
<td>ave 128</td>
<td>1.43</td>
<td>0.87</td>
<td>487.0</td>
<td>269.5</td>
</tr>
<tr>
<td></td>
<td>SD 15</td>
<td>0.26</td>
<td>0.05</td>
<td>82.8</td>
<td>36.0</td>
</tr>
<tr>
<td>ankles 4</td>
<td>ave 127</td>
<td>1.42</td>
<td>0.92</td>
<td>487.3</td>
<td>270.4</td>
</tr>
<tr>
<td></td>
<td>SD 11</td>
<td>0.24</td>
<td>0.06</td>
<td>76.2</td>
<td>37.1</td>
</tr>
<tr>
<td>wrists 2</td>
<td>ave 125</td>
<td>1.34</td>
<td>0.86</td>
<td>455.4</td>
<td>260.6</td>
</tr>
<tr>
<td></td>
<td>SD 8</td>
<td>0.23</td>
<td>0.06</td>
<td>74.6</td>
<td>31.2</td>
</tr>
<tr>
<td>wrists 4</td>
<td>ave 131</td>
<td>1.41</td>
<td>0.90</td>
<td>481.3</td>
<td>265.7</td>
</tr>
<tr>
<td></td>
<td>SD 11</td>
<td>0.29</td>
<td>0.08</td>
<td>95.1</td>
<td>38.6</td>
</tr>
<tr>
<td>ank/wris</td>
<td>ave 131</td>
<td>1.44</td>
<td>0.87</td>
<td>488.4</td>
<td>270.3</td>
</tr>
<tr>
<td></td>
<td>SD 13</td>
<td>0.26</td>
<td>0.04</td>
<td>85.6</td>
<td>37.8</td>
</tr>
<tr>
<td>ank/wris</td>
<td>ave 134</td>
<td>1.49</td>
<td>0.90</td>
<td>507.9</td>
<td>280.2</td>
</tr>
<tr>
<td></td>
<td>SD 10</td>
<td>0.17</td>
<td>0.08</td>
<td>55.0</td>
<td>32.8</td>
</tr>
</tbody>
</table>
3.3 Metabolic rate results

The following graphs illustrate the results for the walking, obstacle course and overall (average of data collected when walking and completing obstacle course) data, in Figures 3.1, 3.2 and 3.3 respectively.

3.3.1 Walking

As weight carried around the waist increased in 2 kg increments from 2 kg up to 10 kg there was a stepped increase in metabolic rate. Figure 3.1 shows that 2 kg around the waist caused a 3 % increase in metabolic rate, with the increase rising to 6, 8 and 9 % for 4, 6 and 8 kg respectively, with the highest increase of 10 % for the 10 kg condition.

When the weight was carried on the ankles the increases in metabolic rate were recorded as 8 and 11 % for 2 and 4 kg respectively. These increases were higher than the 3 and 6 % increases for the same weight when distributed around the waist. The increases for the ankle conditions were also higher than those recorded when the weight was carried around the wrists, 7 and 6 % for the 2 and 4 kg conditions respectively.

When the weight was distributed over the ankles and wrists the increases in metabolic rate were recorded as 9 % for 4 kg (1 kg on each limb) and 17 % for 8 kg (2 kg on each limb). The increase for the 4 kg condition is larger than when the weight is distributed on the waist or around the wrists but smaller than when it is carried only on the ankles.

The metabolic rate recorded in all conditions was significantly (p<0.05) higher than in the control.
3.3.2 Obstacle course

The order of the conditions on the x axis in Figure 3.2 has been kept the same as in Figure 3.1, and on average the increases in metabolic rate recorded for the obstacle course were slightly higher than for the walking work mode. The increases in metabolic rate for the waist were 8, 4, 10, 11 and 13 % for the 2, 4, 6, 8 and 10 kg loads respectively. As for the walking the increase in metabolic rate for the 2 kg ankle weight condition, just under 10 % was much higher than for the 2 kg wrist weight condition (4 %). However, the results for the 4 kg conditions were very similar, 9 % for the ankles, 10 % for the wrists and 9 % for the ankles/wrists. As the obstacle course requires upper body movements including lifting and moving crates the added weight on the wrists had a much greater effect on the metabolic rate than during the walking work mode, except for the wrists 2 condition.

The results for the ankle/wrists conditions are similar to those seen in Figure 3.1, although for the maximum weight condition of 8 kg the metabolic rate
increase is 4% higher than that recorded for the walking work mode, this can most probably be attributed to the additional demands on the upper body of the obstacle course as previously highlighted. The metabolic rate recorded in all conditions was significantly (p<0.05) higher than in the control.

![Graph showing increase in metabolic rate for different weight configurations](image)

Figure 3.2. Increase in metabolic rate when carrying weight simulations around the waist, ankles and wrists (ank/wris; weight split between sites) when completing the obstacle course, compared to an unweighted control, significance (p<0.05) marked by *. (weights in kgs on x-axis).

3.3.3 Overall

The graph for the overall results, Figure 3.3, shows very similar trends to Figure 3.1, greater increases with more weight on the waist, greater increases on the wrists and even greater increases on the ankles. The percentage increases in metabolic rate are slightly higher than those for walking only, but the obstacle course requires movements of the upper body when lifting crates and a greater range of movement in the lower body when stepping and moving over hurdles. The metabolic rate recorded in all conditions was significantly (p<0.05) higher than in the control.
3.4 Weight comparisons

When the data is grouped according to the weight carried as in Figure 3.4 some of the trends described above become more obvious. For the 2 kg conditions, carrying the weight around the waist induced a 3 % increase in metabolic rate when walking, this compares to 7 % and 8 % increases for both activities when the same weight is carried on the wrists and ankles respectively. The results for the obstacle course do not fit this trend as the induced metabolic rate increases were 8 % for the waist condition, 4 % for the wrists and 10 % for the ankles.

For the 4 kg weight conditions, walking caused a 6 % increase in metabolic rate, 7 % overall. Walking with the weight on the wrists also caused only a 6% increase in metabolic rate which jumped to 10 % overall (when the data for obstacle course was included in the average). For the ankles the increases were 11 % for walking, 10 % overall and for the ankles and wrists the increases were 9 % for walking, 10 % overall. For the wrists condition...
clearly the obstacle course required a greater range of movement than just walking hence the increase in metabolic rate from 6 % to 10 %. For the obstacle course weight carried on the ankles and wrists caused metabolic rate increases of 9-10 %, compared to only 4 % for the waist weight. With weight carried wholly or partly on the ankles the increases are consistently 9-11 % for all activity. Doubling the weight carried on the ankles and wrists from 4 kg (1 kg on each limb) to 8 kg (2 kg on each limb) doubled the metabolic rate increase overall from 10 % to 19 %. This increase was greater for the obstacle course (12 %) than the walking condition (8 %).

![Figure 3.4. Increase in metabolic rate due to carrying weight around the waist, ankles, wrists or ankles and wrists (ank/wris) for two work modes, walking (light grey bars) and obstacle course (white bars) and overall (average of data collected when walking and completing an obstacle course (dark grey bars)). Significant (p<0.05) differences between sites for same weight indicated by *.

The only statistically significant differences in the increase in metabolic rate depending on the site of the weight (tested with a one way anova and Tukey post-hoc tests) were seen in the 8 kg conditions, carried either around the waist or on the ankles and wrists (2 kg on each limb). There was a significant increase (p<0.05) from 9 % for the waist to 17 % for the ankles.
and wrists when walking, 11% to 21% for the obstacle course and from 11% to 19% overall.

In Figure 3.5 the data has been expressed in a different way, the weight configurations have been plotted against the increase in walking metabolic rate. The relationship between increasing weight carried on the waist and increasing metabolic rate can be seen to be fairly linear. There are also clear positive relationships between increased weight carried on the ankles and the ankles/wrists, and increased metabolic rate. Compared to the same weight carried around the waist the increase in metabolic rate when walking with weight at the ankles and ankles/wrists is much higher. The metabolic rate recorded when 4 kg was carried around the ankles, as 2 kg on each one was also higher than when 4 kg was carried on the ankles and wrists (1 kg on each limb). Additionally increasing the weight carried at the extremities compared to the waist has a greater increase in metabolic rate as illustrated by the slope of the line with the circular symbol for ankles/wrists. When weight was carried at the wrists a greater increase in metabolic rate was observed than when the weight was carried around the waist, but with no increase in metabolic rate when the weight increased from 2 to 4 kg.

Figure 3.5. Graph of metabolic rate increase in relation to weight carried when walking for the 4 weight distribution sites (waist, ankles, wrists, ankles/wrists).
When the same graph is plotted for the metabolic rate increase during the obstacle course, as in Figure 3.6 the trends are not quite as linear as those seen in the walking data. With the exception of the 4 kg waist condition there is a gradual increase in metabolic rate with increasing weight carried. For the wrists conditions, 2 kg has very little effect, less than 5 % on metabolic rate but when the weight carried is doubled to 4 kg the extra energy cost is also doubled to 10 %. There is very little change when weight is carried around the ankles, with actually a drop in the % increase in metabolic rate from 10 % to 9 % for 2 and 4 kg respectively. The highest increases in metabolic rate can again be seen in the ankles / wrists conditions. The obstacle course requires a much greater range of motion and activities including upper limb movements. The contrast between Figures 3.5 and 3.6 illustrates what happens when testing occurs in the laboratory under idealised conditions, for example, walking on a treadmill, as opposed to incorporating more realistic tasks into the testing as in the obstacle course.

Figure 3.6. Graph of metabolic rate increase in relation to weight carried during the obstacle course for 4 weight distribution sites (waist, ankles, wrists, ankles/wrists).
3.5 Rate of Perceived Exertion results

Participants also recorded their ‘Rate of Perceived Exertion’ in the final minute of the work periods and the results are summarised in Figure 3.7. For the control (no weight) condition participants rated their exertion at 9 (very light) for the walking and just under 12 (between light and somewhat hard) for the obstacle course.

For the walking work mode most values for the weighted conditions were rated around 10 except waist 2 which was perceived closer to 9, the same value as the control, and ankles/wrists 8 perceived as 11 (light). For the obstacle course 7 of the conditions were perceived between 12 and 13 (somewhat hard) and the wrists 4, ankles/wrists 4, ankles/wrists 8 and waist 10 conditions perceived closer to 14. However, none of the observed values were significantly different from the control.

Figure 3.7. Graph of results of ‘Rate of Perceived Exertion’ responses taken during last minute of walking and obstacle course work modes for all weight simulations and control.
4. Discussion

The resulting increases in energy costs of walking and completing an obstacle course with additional weight around the waist, ankles and wrists compared to a control condition with no weight have been described. When walking with weight carried around the waist and increasing in 2 kg increments from 2 kg to 10 kg there was a stepped rise in the increase in metabolic rate percentages from 3 to 10 %. The increases in metabolic rate were highest for the ankle / wrists conditions, 17 % and 9 % for the 8 kg and 4 kg conditions respectively, followed by the ankles, 11 % and 8 % and the wrists, 6 % and 7 % (4 kg and 2 kg respectively). For the obstacle course work mode the general trend in the results was very similar with all the extremity conditions being higher than the metabolic rate recorded with the same weight around the waist, except the wrists 2 kg result.

All of the increases seen in metabolic rate across the weight simulations were statistically significant (p<0.05) from an unweighted control. However the only significant difference between conditions, when the same weight was carried in different locations was for the heaviest 8 kg configurations. Metabolic rate increases recorded with 8 kg carried on the ankles and wrists were significantly (p<0.05) higher than for weight carried around the waist. The metabolic rate increases for the 4 kg and 2 kg configurations were for the most part higher with the weight on the extremities than the waist but the size of the differences, less than 5 % and the sensitivity of the method discussed previously meant significance was not achieved. This outcome is disappointing, however the increased metabolic costs of carrying the weight around the ankles and wrists are clear, Figure 4.1 combines the data from the weight conditions (waist, ankles, wrists, ankles/wrists) with data collected on protective clothing in Study 1 (Chapter 3) and the theoretical data calculated from the equation of Givoni and Goldman (1971), also presented in the previous chapter. The data collected in this study for weight carried around the waist fits well with Givoni and Goldman (1971), whose equation gives an increase in energy cost of 1 % per kg for load carried. The increase in metabolic rate when carrying the weight around the ankles/wrists
is 2.25 % per kg (taken from the slope of the line for ankles/wrists data) and
the increase in energy cost per kg of the clothing from the clothing linear
regression line is 2.7 % per kg, as described previously. Therefore the
metabolic costs of carrying the clothing weight could be well explained if the
majority of the clothing weight was concentrated around the extremities,
however this is unrealistic and thus factors other than clothing weight must
be contributing to the metabolic rate increases observed.

Figure 4.1. Increase in metabolic rate in relation to clothing weight or load carried on
the waist, ankles, wrists, ankles/wrists. Theoretical line based on equation of Givoni
and Goldman (1971).

The 2.7 % increase in energy cost per kg of clothing weight fits very well
with Rintamaki (2005) who suggests that each additional kg in clothing
weight increases energy costs by approximately 3 % and Oksa et al. (2004)
who detail increases in energy cost per extra kg of clothing of 2.7 – 3.3 %. In
the study of Oksa et al. (2004) subjects jogged at 50 % of their Vo2 max on
a treadmill for 60 minutes, the environmental conditions were 20 °C, 0 °C
and –15 °C and subjects wore 1 (weighing 1 kg), 2 (3.6 kg) or 3 (4.9 kg)
layers of clothing respectively. Although the study was complicated by the
fact that the different clothing layers were worn in different temperatures the
authors assert that as mean skin temperatures were stabilised at 31.5°C, 29.5°C and 30.0°C in the 20°C, 0°C and –15°C environments respectively, the observed increase in energy cost was not directly related to the body cooling but rather reflected the effect of clothing. The final oxygen consumption values of 1.67, 1.78 and 1.88 l/min correspond to increases in energy cost per extra kg of clothing of 2.7 – 3.3 % (Oksa et al. 2004).

The trend for greater increases in metabolic rate when performing the obstacle course compared to walking as seen in Figures 3.1 to 3.4 can be explained by the greater range of movements required. Walking on the treadmill obviously requires a degree of leg and arm swing but the range of movement is quite small. In contrast, the obstacle course required participants to squat with the crates, step, crawl and bend in the lower body and lift, carry and place the weighted crates at different levels involving the upper body. This explanation fits with both Nunneley (1989) and Murphy et al. (2001) who observed greater effects of heavy clothing in tasks that required greater movements. In the study of Murphy et al. (2001) the tasks of a continuous nature (load carriage and obstacle course), requiring more mobility demonstrated a greater increase in oxygen consumption and thus metabolic cost than stationary tasks. It would also follow from these studies that heavier loads cause greater increases in metabolic costs but in terms of the treadmill walking data in Figure 4.1 for this study there was a different finding. When weight was carried at the wrists there was a greater increase in metabolic rate than when the weight was carried around the waist, but in this study there was no increase in metabolic rate when 4 kg was carried on the wrists compared to 2 kg. This is a slightly surprising finding, however it can be explained by the fact that the participants were instructed to keep their arm swing as natural as possible and swinging the arms was not enforced. In hindsight they may actually have reduced their arm movements when carrying the heavier weights to reduce the impact and energy cost of the increased load. Soule and Goldman (1969) discuss compensation mechanisms that may be functioning when the load is carried on the hands. Shortening the swing of the arms, reduces the physical work so conserving energy which is balanced against the extra energy cost of fixing the
extremities. They suggest this could be occurring at lower walking speeds with lighter weights but the results for this study suggest a smaller arm swing when more weight is carried.

Auble et al. (1987) reported that carrying hand weights caused only small increases in the aerobic energy requirement of normal walking, increases that could have been achieved by increasing walking speeds. In contrast pumping handweights (arms fully flex, swing upwards and fully extend downwards) while walking substantially increased the energy cost of normal walking. So the authors suggest that the most likely cause of variability in the effects of handweights is the amount of arm movement used when walking. In many of the studies that have assessed the use of hand, wrist and ankle weights for aerobic training, arm swinging has been strictly controlled and often exaggerated. This has led to findings of substantially greater energy costs when carrying weights on the hands and wrists than the ankles (Claremont and Hall 1988, Graves et al. 1988) and in comparison to the present study.

As explained in the introduction, the study by Soule and Goldman (1969) was one of the first to consider the effects of weight carried on energy costs. However the loads used in their study were extreme, up to 7 kg in each hand and 6 kg on each foot. The increased energy cost for their data can be calculated as in this study using the data presented in Table 2 of their paper which details the energy cost (expressed as millilitres of oxygen consumption per minute) of carrying the loads at 3 different speeds. When walking at a speed of 4.8 km/hr the increase in energy cost compared to a no load condition is 14 % and 34 % for the hands, 4 kg and 7 kg respectively and 95 % for the feet (6 kg).

It is also important to emphasize the different sites used, in the present study the weight was attached to the ankle but in the Soule and Goldman (1969) study the load for the feet was made by filling standard US Army double-walled “vapour barrier” with mercury until each boot weighed 6 kg. The authors discuss the fact that some of the increase in energy cost may
be attributable to the fact that with 6 kg added to each foot, there was some
immobilisation of the ankle joint, preventing the normal flexion-extension of
the ankle. The different footwear used is also important to the scale of the
differences found. In the present study, trainers were worn with the weight
attached to the ankle as opposed to the army boots used by Soule and
Goldman (1969). It is well known that the weight of footwear can influence
the energy cost of walking and running (Jones et al. 1984, Legg and
Mahanty 1986).

Energy cost was found to be significantly higher, 0.7 % per 100 g increase
in the weight of boot, over a range of walking speeds when wearing boots
than compared to lightweight athletic shoes by Jones et al. (1984). They
attribute a large portion of the increase to the weight of the footwear, also
noting that the increased energy cost of locomotion with boots appears to
place a limiting stress on untrained subjects (Jones et al. 1984). Legg and
Mahanty (1986) also clearly showed increasing the weight of a pair of boots
significantly increased the energy cost of treadmill walking, a mean increase
of 0.96 % in \(\dot{V}_O_2 \) for each 100 g increase in boot weight. Applying the figures
of 0.7 – 0.96 % per 100 g of boot weight to the present study would increase
energy cost by 7–9.6 % and 14–19.2 % for the ankles 2 and ankles 4
conditions. However the increased energy costs recorded in the present
study were lower, 8 % and 9–11 % for the ankles 2 kg and 4 kg conditions
respectively. It must be remembered that in the present study trainers were
worn by the participants and weights carried around the ankle therefore it is
not surprising that the results are slightly lower than predicted by the results
of the 2 studies that used military boots (Jones et al. 1984, Legg and
Mahanty 1986) but otherwise they are rather close.

Although Legg and Mahanty (1986) did not carry out gait analysis, variations
in the regional discomfort ratings they did record suggest increasing boot
weight may influence gait and this links with observations from Soule and
Goldman (1969). Therefore adopting a different walking stance/style that is
more rigid and less efficient could potentially increase energy cost.

Weight simulations
5. Chapter summary

The purpose of this trial, was to look at the effects of carrying more realistic simulated clothing weight distributions close to the body’s centre of gravity (using a weight belt) and at the extremities (weights worn around the wrists and ankles). The findings confirmed the hypotheses put forward at the beginning of the chapter, i) the further away from the body core the weight is positioned the higher the resulting energy cost during work and ii) the energy cost of the extremity weight conditions (ankles and wrists) will be higher in activities requiring greater ranges of movement of the limbs, in this case the obstacle course compared to walking.

The results provide additional data about the energy costs of carrying weights of 2 – 10 kg around the waist and on the extremities. The energy cost of carrying weight on the ankles and wrists was shown to be 2.25 % per kg compared to 1 % per kg for weight carried around the trunk. Additionally work requiring greater ranges of movement in all limbs, in this instance completing an obstacle course also incurs a greater energy cost compared to a less demanding activity, for example, walking.

The weight of protective garments and the distribution of that weight can therefore clearly have a significant effect on the metabolic cost of work as the wearer has to carry the additional load of the garment on their body. The effect of the load is dependent on where the extra weight is present, being particularly costly if the material on the arms and trousers of the garment is heavy, as weight on the limbs has to be accelerated and decelerated with each step. Data from Chapter 3 of a 2.7 % increase in energy cost per kg of clothing also corresponds very well with previously documented values.

Although the % increase in energy cost per kg values observed for carrying load at the ankles and wrists resemble those for clothing, in the later case obviously not all weight is concentrated at the extremities which leaves a role for other factors such as clothing bulk and stiffness, number and friction of layers, which will be investigated in subsequent chapters.
REFERENCES

Weight simulations

Weight simulations

Mayer, A. (2006). 'The need of continuous improvement of the EN standards on PPE and of the information given to consumers'. 3rd European Conference on Protective Clothing (ECCPC) and NOKOBETEF 8, Gdynia, Poland.

Weight simulations

Weight simulations

