Loughborough University
Browse
Thesis-2014-Zhu.pdf (1.35 MB)

Mathematical optimization techniques for demand management in smart grids

Download (1.35 MB)
thesis
posted on 2014-07-03, 11:32 authored by Ziming Zhu
The electricity supply industry has been facing significant challenges in terms of meeting the projected demand for energy, environmental issues, security, reliability and integration of renewable energy. Currently, most of the power grids are based on many decades old vertical hierarchical infrastructures where the electric power flows in one direction from the power generators to the consumer side and the grid monitoring information is handled only at the operation side. It is generally believed that a fundamental evolution in electric power generation and supply system is required to make the grids more reliable, secure and efficient. This is generally recognised as the development of smart grids. Demand management is the key to the operational efficiency and reliability of smart grids. Facilitated by the two-way information flow and various optimization mechanisms, operators benefit from real time dynamic load monitoring and control while consumers benefit from optimised use of energy. In this thesis, various mathematical optimization techniques and game theoretic frameworks have been proposed for demand management in order to achieve efficient home energy consumption scheduling and optimal electric vehicle (EV) charging. A consumption scheduling technique is proposed to minimise the peak consumption load. The proposed technique is able to schedule the optimal operation time for appliances according to the power consumption patterns of the individual appliances. A game theoretic consumption optimization framework is proposed to manage the scheduling of appliances of multiple residential consumers in a decentralised manner, with the aim of achieving minimum cost of energy for consumers. The optimization incorporates integration of locally generated and stored renewable energy in order to minimise dependency on conventional energy. In addition to the appliance scheduling, a mean field game theoretic optimization framework is proposed for electric vehicles to manage their charging. In particular, the optimization considers a charging station where a large number of EVs are charged simultaneously during a flexible period of time. The proposed technique provides the EVs an optimal charging strategy in order to minimise the cost of charging. The performances of all these new proposed techniques have been demonstrated using Matlab based simulation studies.

Funding

Toshiba Research Europe, University of Loughborough

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Ziming Zhu

Publication date

2014

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.617893

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC