Robust intelligent metrology

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference contribution.

Metadata Record: https://dspace.lboro.ac.uk/2134/15550

Version: Accepted for publication

Publisher: Royal Academy of Engineering

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Robust Intelligent Metrology considers how to maintain, develop, streamline and apply core metrological principles within rapidly evolving measurement scenarios and environments. The aim is to deliver metrology laboratory quality measurements and data confidence, but with equipment integrated into operating High Value Manufacturing cells. Key challenges are to understand transducer / surface interactions, data processing and integrity, in-cell calibration / traceability. The end result is to provide engineers with quicker, better data.

Robust Intelligent Metrology is demonstrated in the context of Automated Surface Defect Measurement on a wide range of different surfaces. The emphasis has been to develop calibrated and traceable 3D data processing environments, which allow the measurement of varying scales of surface defects/features (micrometres to millimetres) on significantly different substrates, using a wide range of different commercial transducers for source data.

Automated 3D data processing:
- Matlab
- C++
- MVTec Halcon
- Robust Gaussian based filtering
- Defect calibration standards
- Traceable 3D Softgauges

Transducer technologies:
- Focus Variation
- Coherence Scanning -Interferometry
- Optical low-Coherence -Tomography
- Fringe projection
- Confocal Microscopy
- Trigonalization gauges
- Scanning contact systems

HVM measurement challenges:
- In-line / On-line
- Robotically interfaced
- Large area
- High resolution
- Real-time data processing
- Multiple DOFs
- One sensor measures all
- Calibration / Traceability
- Health checking
- Artefacts / Soft Gauges
- Uncertainties / Errors

Current Projects:
- Surface defect analysis
- Optical micro-CMMs
- Near UV line scan systems
- Non-linear optical analysis
- Surface scattering modelling
- Calibration standards
- Multi-beamed transducers
- Robotic interfacing
- Traceable Artefacts / Soft Gauges

Automated Surface Defect Measurement
Robust Intelligent Metrology is demonstrated in the context of Automated Surface Defect Measurement on a wide range of different surfaces. The emphasis has been to develop calibrated and traceable 3D data processing environments, which allow the measurement of varying scales of surface defects/features (micrometres to millimetres) on significantly different substrates, using a wide range of different commercial transducers for source data.

Automated 3D data processing:
- Matlab
- C++
- MVTec Halcon
- Robust Gaussian based filtering
- Defect calibration standards
- Traceable 3D Softgauges

Transducer technologies:
- Focus Variation
- Coherence Scanning -Interferometry
- Optical low-Coherence -Tomography
- Fringe projection
- Confocal Microscopy
- Trigonalization gauges
- Scanning contact systems

HVM measurement challenges:
- In-line / On-line
- Robotically interfaced
- Large area
- High resolution
- Real-time data processing
- Multiple DOFs
- One sensor measures all
- Calibration / Traceability
- Health checking
- Artefacts / Soft Gauges
- Uncertainties / Errors

Current Projects:
- Surface defect analysis
- Optical micro-CMMs
- Near UV line scan systems
- Non-linear optical analysis
- Surface scattering modelling
- Calibration standards
- Multi-beamed transducers
- Robotic interfacing
- Traceable Artefacts / Soft Gauges