Hydrodynamic behavior of zero-valent iron permeable reactive barriers: effects of permeability loss

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is a poster presentation abstract presented at the IAP conference 2014. The conference booklet is available at: http://www.wetsus.nl/websites/wetsus.nl/mediadepot/22037b57c943.pdf

Metadata Record: https://dspace.lboro.ac.uk/2134/15793

Version: Accepted for publication

Publisher: Wetsus

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Hydrodynamic behavior of Zero-valent Iron Permeable Reactive Barriers: Effects of Permeability Loss

U. Santisukkasaem and D. B. Das
U.Santisukkasaem@lboro.ac.uk and D.B.Das@lboro.ac.uk
Department of Chemical Engineering, Loughborough University, LE11 3TU, United Kingdom

The permeable reactive barrier (PRB) is a widely used technology for in-situ subsurface remediation as it is capable of treating large contaminant plumes cost effectively. Zero-valent iron (ZVI) is a reactive material that has been extensively used as it is highly reactive and suitable for treating various kinds of contaminants, i.e. hydrocarbons and heavy metals. Despite the facts that ZVI-PRB has been used in groundwater remediation technologies, the complex mechanisms that occur in the treatment process need further studies and the longevity of the system is unpredictable. The significant issues that need to be addressed which is intimately related to the hydrodynamic of PRB is the rate of mineral precipitation and permeability/porosity reduction within the PRB as well as the potential of ZVI-PRBs for remediation of contaminants. A series of column experiments has been set up (14 cm inner diameter and length of 90 cm) and operated with the conditions imitating the natural groundwater environment, i.e. flow rate and water constituents. The experimentally measured values of main parameters following Darcy’s law will be used in calculating the permeability and computer simulation. The corroded ZVI will be analysed to identify the composition of the precipitates and to determine the porosity changes using micro X-ray CT scanner (µCT) and X-ray Diffraction (XRD). From the flow column experiment, it can be seen that there is a drop in flow rate and a decrease in the intrinsic permeability relative to time, i.e. total flow. The XRD detected the chemical components of Magenetite and Maghemite which are the iron oxides that occur from the reduction of iron in water. The image from µCT indicated the changes in particle size, pore size and porosity. It can be concluded that the pores have been blocked due to the mineral precipitation thus reducing the flow rate and permeability. The results of the computer simulation can be used to determine the rate of mineral precipitation and support in designing the appropriate PRB, i.e. in term of longevity.

Key Words: Zero-valent iron, permeable reactive barrier, hydrodynamic, mineral precipitation