Loughborough University
Browse
KKL_3dMLG.pdf (2.24 MB)

Numerical continuation analysis of a three-dimensional aircraft main landing gear mechanism

Download (2.24 MB)
journal contribution
posted on 2014-09-26, 10:50 authored by James KnowlesJames Knowles, Bernd Krauskopf, Mark H. Lowenberg
A method of investigating quasi-static landing gear mechanisms is presented and applied to a three-dimensional aircraft main landing gear mechanism model. The model has 19 static equilibrium equations and 20 equations describing the geometric constraints in the mechanism. In the spirit of bifurcation analysis, solutions to these 39 steady-state equations are found and tracked, or continued, numerically in parameters of interest. A design case-study is performed on the land-ing gear actuator position to demonstrate the potential relevance of the method for industrial applications. The trade-off between maximal efficiency and peak actuator force reduction when positioning the actuator is investigated. It is shown that the problem formulation is very flexible and allows actuator force, length and efficiency information to be obtained from a single numerical continuation computation with minimal data post-processing. The study suggests that numerical continuation analysis has potential for investigating even more complex landing gear mechanisms, such as those with more than one sidestay.

Funding

The research of J.A.C. Knowles was supported at the University of Bristol by an Engineering and Physical Sciences Research Council CASE award in collaboration with Airbus.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Nonlinear Dynamics

Volume

71

Issue

1-2

Pages

331 - 352 (21)

Citation

KNOWLES, J.A.C., KRAUSKOPF, B. and LOWENBERG, M., 2013. Numerical continuation analysis of a three-dimensional aircraft main landing gear mechanism. Nonlinear Dynamics, 71 (1-2), pp. 331 - 352.

Publisher

© Springer Science+Business Media

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2013

Notes

The final publication is available at Springer via http://dx.doi.org/10.1007/s11071-012-0664-z

ISBN

0924-090X

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC