Unusual metal-coordinated zwitterionic P-C-N-C-N-C phosphido adducts

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: EKUBO, A.T. ... et al, 2010. Unusual metal-coordinated zwitterionic P-C-N-C-N-C phosphido adducts. Inorganic Chemistry, 49 (8), pp. 3703 - 3705.

Additional Information:

- This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see: http://dx.doi.org/10.1021/ic1002308

Metadata Record: https://dspace.lboro.ac.uk/2134/15946

Version: Submitted

Publisher: © American Chemical Society

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Unusual Metal-Coordinated Zwitterionic P–C–N–C–N–C Phosphido Adducts

Allen T. Ekubo, Mark R. J. Elsegood, Andrew J. Lake and Martin B. Smith*
Department of Chemistry, Loughborough University, Loughborough, Leics, LE11 3TU, U.K.

Rare examples of homodinuclear zwitterionic PdII and PtII complexes with bridging, two-coordinate P(cyclo-CH\textsubscript{2}N(R)CHN(R)CH\textsubscript{2}) ligands (R = 4-FC\textsubscript{6}H\textsubscript{4}CH\textsubscript{2}, C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}) have been characterized by single crystal X-ray diffraction using synchrotron radiation. Short N–C distances and enlarged N–C–N bond angles support electron delocalization in the central N–C–N backbone.

Two-coordinate phosphorus ligands attract considerable interest for their diverse transition metal chemistry. Phosphenium cations (R\textsubscript{2}P+)1 or phosphido anions (R\textsubscript{2}P−)2 are important classes of two-coordinate phosphorus ligands. Phosphenium ions have been widely studied and stabilized by various donor substituents e.g. aryl/alkylamino3, hydrocarbon4 and N,C-bonded β-diketiminato groups.5 Burford and co-workers6 have elegantly shown phosphenium cations can be isolated upon coordination to tertiary phosphine ligands. Furthermore, phosphenium ions can readily be stabilized at transition metal centers.1 Phosphido ligands are known to bind in a terminal fashion2 or, more commonly, bridge two metal centers.2 Whilst this bridging mode is common for phosphides, it is considerably more unusual for tertiary phosphines to function in this manner.7

As part of continuing studies in our group investigating supramolecular interactions in (di)tertiary phosphines,8 we recently reported easily accessible intramolecular H-bonded phosphine analogues of the cage ligand PTA (PTA = 1,3,5-triaza-7-phosphaadamantane).8a The recent surge in interest with PTA, and its analogues, can be traced to the ease of chemical modification9 and diverse coordination, cytotoxic and catalytic properties.10 Herein we report the structural characterization of two peculiar homodinuclear zwitterionic PdII and PtII complexes of a partially delocalized six-membered P{cyclo-CH\textsubscript{2}N(R)CHN(R)CH\textsubscript{2}} (R = 4-FC\textsubscript{6}H\textsubscript{4}CH\textsubscript{2}, C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}) bridging phosphido ligand.

Reaction of [Pd(κ\textsubscript{2}-C\textsubscript{6}H\textsubscript{4}CH\textsubscript{2}NMe\textsubscript{2})(μ-Cl)]\textsubscript{2} with two equiv. of L\textsubscript{1} (R = 4-FC\textsubscript{6}H\textsubscript{4}CH\textsubscript{2}; X = Cl)8a in CH\textsubscript{2}Cl\textsubscript{2} afforded the cyclometallated complex 1 in high yield (78%). Displacement of the labile acetonitrile ligands from [PtCl\textsubscript{2}(MeCN)\textsubscript{2}] upon treatment with two equiv. of L\textsubscript{2} (R = C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}; X = SbF\textsubscript{6})8a in CH\textsubscript{2}Cl\textsubscript{2} afforded PtCl\textsubscript{2}(L\textsubscript{2})\textsubscript{2} in 82% isolated yield (see Supporting Information for characterizing data for 1 and 2).

The molecular structure of 1 has been confirmed by X-ray crystallography (Figure 1) and shows an approximate square-planar geometry about Pd(1) with Pd(1) trans to N(4) of the cyclometallated ligand.11 Around the coordination sphere of Pd(1), the Pd(1)–Cl(1), Pd(1)–P(1), Pd(1)–C(26) and Pd(1)–N(4) distances are as anticipated.11 One noticeable feature, and pertinent to structural discussions of 3 and 4 (vide infra), are the key metric parameters within the saturated P(1)–C(9)–N(2)–C(11)–N(3)–C(10) ring. The P(1)–C(9)/P(1)–C(10) [1.826(2) and 1.836(2) Å] and C(9)–N(2)/C(10)–N(3) bond lengths [1.470(3) and 1.458(3) Å] are all in accord with formal single bonds.
Furthermore, the N(2)−C(11)/C(11)−N(3) distances [1.468(3) Å, 1.457(3) Å] are consistent with single bonds and the N(2)−C(11)−N(3) bond angle is 110.19(18)°. The Σ[N(2)/N(3) angles] are 330.5° and 332.6° respectively, clearly indicating a distorted pyramidal geometry about each N atom. Finally, intramolecular N−H···N hydrogen bonding [N(1)···N(3) 2.895(3) Å, H(1A)···N(3) 2.43(3) Å, N(1)−H(1A)···N(2) 111.8(19)°, N(1)···N(2) 2.944(3) Å, H(1B)···N(2) 2.31(3) Å, Å, N(1)−H(1B)···N(2) 330.5 º] are consistent with single bonds. Furthermore, the N(2)−C(1)/C(1)−N(3) bond angles are 127.1(4)° for 3, 126.1(4), 127.6(4) for 4, 127.6° for 3 and 4, suggesting a near symmetric bonding motif of the μ²-bridging phosphido ligand perpendicular to this plane. Compound 3 lies on an inversion center about the midpoint defined by the PdP2 core. Along the P···P vector, the two 16-electron “MCl2” metal fragments are slightly distorted, from planarity, by 13.0° (for 3) and 2.1° (for both independent molecules in 4). The M−P distances are essentially equivalent [2.2448(12), 2.2350(12) Å for 3; 2.2316(11), 2.2250(10) and 2.2235(10), 2.2314(11) Å for 4] suggesting a nearly symmetric bonding motif of the μ²-bridging phosphido in both cases. Moreover, the Pd−P bond lengths in 3 are slightly longer than those found in 1.

The coordinated ligand, in 3 and 4, can be regarded as zwitterionic whereby the positive charge is located on the central N−C−N backbone and the negative charge (not shown) on the P atom (or more likely the Pd metal center thereby satisfying a 16-electron count). Consequently the central N−C−N carbon atom has undergone a change in hybridization from sp² (in 1) to sp³ (in 3 and 4). Support for electron delocalization of the positive charge into the N−C−N backbone comes from the contracted N−C bond lengths [N(1)−C(2) 1.311(6) Å and C(2)−N(2) 1.320(6) Å for 3; N(1)−C(2) 1.302(5) [1.306(5)] Å and C(2)−N(2) 1.303(5) [1.312(5)] Å for 4] and expanded N−C−N angles [127.1(4)° for 3; 126.1(4), 127.6(4) for 4]. The Σ[N(2)/N(3) angles] for both structures are ca. 360° respectively clearly indicating the N atoms adopt a planar configuration. Within each six-membered ring, the C−N−C−N−C−N atoms are essentially co-planar (±0.043 Å for 3; ±0.061, 0.054, 0.043, 0.031 Å for 4). Furthermore, in 3 the P(1) atom lies out of this plane by 0.866 Å (hinge angle between mean planes C(1)/N(1)/C(2)/N(2)/C(3) vs. C(1)/P(1)/C(3) = 45.4°) while in 4, the equivalent hinge angles lie in the range 44.2−46.6°. The metric parameters for 3 and 4 clearly support a two-coordinate P-ligand. Finally, in 3 the Pd(1)···Pd(2) separation is 3.556 Å.
ting the absence of any single metal–metal bonding and similarly seen for 4 [Pt(1)···Pt(2)/Pt(3)···Pt(4) 3.520/3.521 Å].

Although the mechanism for formation of 3 and 4 is unclear at present, one plausible pathway involves carboxylation formation via hydrogen abstraction/H₂ elimination from the central –(R)N–CH₂–N(R)– backbone. Elimination of “(R)NCH₂”–, possibly as [(R)NH–CH₃]⁺, affords a highly reactive mononuclear terminal phosphido complex. Displacement of a tertiary phosphine L₃ (for 2) or adventitious HCl protonation of the cyclometallated C,N-ligand (for 1), followed by dimerization, may account for the formation of the observed homodinuclear complexes.

In summary, homodinuclear late-transition metal centers can be used to stabilize unexpected zwitterionic, two-coordinate phosphorus ligands in a bridging ligation mode. Further studies are currently underway to investigate preparative routes to these highly unusual phosphido ligands and probe the mechanism for their transformation.

Acknowledgment. We would like to thank the EPSRC, Loughborough University, and Niger Delta University, Bayelsa State, Nigeria, for funding (A.T.E., A.J.L.). Rhodia UK Ltd. (Dr. Ranbir Padda) and Johnson Matthey are acknowledged for helpful discussions. And me metal salts, respectively. Dr Kevin Flower is thanked for helpful discussions.

Supporting Information Available: Synthetic details, characterizing data and X-ray data for 1, 3 and 4 in CIF format and additional figures and details. This material is available free of charge via the Internet at http://pubs.acs.org.

* To whom correspondence should be addressed. E-mail: m.b.smith@lboro.ac.uk.

Single crystal X-ray crystallography has been used to elucidate the solid state structures of an unusual pair of homodinuclear zwitterionic complexes $\text{M}_2\text{Cl}_4[\mu^2-\text{P}\{\text{cyclo-CH}_2\text{N(R)CHN(R)CH}_2\}]_2$ ($\text{M} = \text{Pd}, \text{R} = 4$-FC$_6H_4CH_2$ (shown below); $\text{M} = \text{Pt}, \text{R} = \text{C}_6\text{H}_5\text{CH}_2$).