Electron transfer reactions in ternary systems on silica gel surfaces: evidence for radical cation diffusion

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This article was published in the journal, Photochemical and Photobiological Sciences [© Royal Society of Chemistry and Owner Societies]. The definitive version is available at: http://dx.doi.org/10.1039/c0pp00049c

Metadata Record: https://dspace.lboro.ac.uk/2134/16134

Version: Accepted for publication

Publisher: © Royal Society of Chemistry and Owner Societies

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Electron Transfer Reactions in Ternary Systems on Silica Gel Surfaces: Evidence for Radical Cation Diffusion

Sian L. Williams,* Iain Kirkpatrick, and David R. Worrall

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth XXXXXXXXX 200X
DOI: 10.1039/b000000x

Electron transfer reactions have been studied between 9-anthracencarboxylic acid co-adsorbed with perylene on silica gel surfaces employing azulene as a molecular shuttle in order to facilitate hole transfer. In this paper we present for the first time a ternary system that unambiguously demonstrates an appreciable mobility of radical cations on the silica gel surface. Rates of hole transfer from the 9-anthracencarboxylic acid radical cation to perylene via azulene have been studied using diffuse reflectance laser flash photolysis spectroscopy. Azulene has been shown to enhance the rate of electron transfer in the ternary system, demonstrating significant mobility of the azulene and its radical cation species on silica gel surfaces. The data shows that the azulene radical cation can diffuse at an appreciable rate on the silica gel surface.

Introduction

The photochemistry and photophysics of molecules adsorbed to oxide surfaces and contained within zeolites has been the subject of a number of studies. The rapid mobility of molecules on oxide surfaces has been previously reported, and studied through both energy and electron transfer reactions. The latter have also been studied on other porous materials such as clays. Silica gel, which was employed in this study, is widely used in industry as a catalytic support and a greater understanding of reaction kinetics on these materials is significant in optimising these applications.

Multi-photon ionisation of arenes and the subsequent electron transfer reactions of their radical cations on silica gel have been previously reported, and the influence of the nature and loading of the electron donor and electron acceptor compounds on the reaction rate investigated. The kinetics of decay of radical ions on silica gel is not straightforward since the surface is heterogeneous in nature and rates rarely conform to simple exponential kinetics. We have used the model described by Albery et al. to characterise our data sets, ensuring a comprehensive exploration of the parameter space in order to obtain a global optimum value for the rate constants.

We have previously shown that energy and electron transfer reactions in these systems are dependent upon the rate of diffusion, and in the case of azulene as energy acceptor / electron donor, rates of reaction are largely determined by the rate of diffusion of this relatively more mobile species. We have demonstrated also that energetics play a role in determining electron transfer rates, and have shown a Marcus-type dependence of rate on the free energy for electron transfer. In this study we also found evidence for some steric influence on reaction rates.

In previous work we studied the activation energy of back electron transfer of some derivatised anthracenes. There was a correlation between the activation energy and the size of the radical cation which suggested that movement of the radical cation and not of the electron dominated the observed kinetics. In this paper we present for the first time a ternary system that unambiguously demonstrates the mobility of radical cations on the silica gel surface.

Experimental

Samples were prepared as follows: Silica gel (Davisil grade 635, 60-100 mesh, 6 nm pore size, surface area 480 m² g⁻¹; Aldrich Chemical Co.) was dried at a temperature of 125 °C under a vacuum of 5 x 10⁻⁵ mbar for 8 hours, and the vessel re-pressurised with dry nitrogen. 9-anthracencarboxylic acid (minimum 99%, Aldrich Chemical Co.), azulene (99%, Aldrich Chemical Co.) and perylene (99%, Aldrich Chemical Co.) were dissolved in acetonitrile (spectrophotometric grade, Aldrich Chemical Co.) and a known weight of the resulting solution added to the dried silica gel. The mixture was allowed to equilibrate for a period of one hour, with periodic agitation. The solvent was then removed under vacuum to a pressure of 5 x 10⁻³ mbar. The resulting sample was then sealed under vacuum into a cylindrical glass cuvette (22 mm diameter x 10 mm path length). Sample loadings were determined from the mass of solution added to the silica gel. The loadings were varied between 0.1 μmol g⁻¹ and 2.5 μmol g⁻¹ for all three components. These concentrations correspond to low surface coverages, with the highest being less than 0.1% of a homogenous 2D surface monolayer.

Ground state diffuse reflectance spectra were recorded using a Perkin-Elmer Lambda Bio 40 spectrophotometer equipped with a Spectralon integrating sphere using barium sulphate as a reference.

The nanosecond diffuse reflectance laser flash photolysis apparatus has been described previously in references 16 and 27. In the flash photolysis experiments, excitation of the samples was with the third (355 nm, 110 mJ/pulse) harmonic of a Surelite I Nd:YAG laser (Continuum). The pulse energy was attenuated using solutions of sodium nitrate in water, to ensure that transient reflectance changes were kept below 10%, where the change in reflectance is directly proportional to the concentration of transient species. Diffusely reflected analysing light from a 275 W xenon arc lamp (Oriel) was collected and focussed onto the entrance slit of an f/3.4
grating monochromator (Applied Photophysics) and detected with a side-on photomultiplier tube (Hamamatsu R928). Signal capture was by an LT364 Waverunner digitising oscilloscope (LeCroy), interfaced to an IBM-compatible PC.

Transient decay data has been analysed using a model which assumes a log Gaussian distribution of rate constants described previously13,14,50 according to equation 1

\[\frac{C}{C_0} = \frac{\int \exp(-t^2) \exp[-\bar{k} t \exp(\gamma t)] dt}{\int \exp(-t^2) dt} \]

which was transformed to have finite integrals as described in the appendix of reference50. Here C and C_0 are transient concentrations at times $t = t$ and $t = 0$ after the laser pulse, γ is the width of the distribution and \bar{k} is the mean rate constant.

At low sample loadings and small reflectance changes (less than 10%), C and C_0 can be replaced by ΔR and ΔR_0, the reflectance changes at times $t = t$ and $t = 0$ (relative to the laser pulse) respectively.

\section*{Results and Discussion}

\subsection*{Transient absorption spectra}

Transient absorption spectra were obtained using 355 nm laser excitation of the respective samples. Fig. 1 shows the transient difference spectrum obtained from photolysis of 9-anthracencarboxylic acid co-adsorbed with perylene on silica gel following laser excitation at 355nm. Anthracene triplet (420nm) and radical cation (400 nm and 710 nm) absorption bands were assigned based upon previous measurements3,4,13,14.

Fig. 1 Transient difference spectra of 9-anthracencarboxylic acid (2.3 \text{ mmol g}^{-1}) co-adsorbed with perylene (0.25 \text{ mmol g}^{-1}) on silica gel at 2 ms (solid line), 10 ms (dashed line) and 50 ms (dotted line) following laser excitation at 355 nm.

The perylene radical cation (530 nm) absorption band was assigned by comparison to literature data of measurements carried out on surfaces and in solution41-54 The 9-anthracencarboxylic acid triplet (420 nm) decays quite rapidly by both unimolecular decay and by energy transfer to perylene.

Note that in this study 9-carboxylic acid anthracene is used since it has been demonstrated to be immobile on the silica gel surface13 as evidenced by the lack of delayed fluorescence following laser excitation. Hence any dynamic quenching observed is the result of the diffusional characteristics of the co-adsorbed species. The perylene radical cation (530 nm) appears concomitantly with the anthracene radical cation (710 nm) decay. Kinetic analysis of these species shows that, as expected, the rate of appearance of the perylene radical cation and dissappearance of the anthracene radical cation are the same to within experimental error (see Table 1).

Co-adsorption of azulene into the 9-anthracencarboxylic acid / perylene system changes the observed electron transfer kinetics (vide infra) but does not affect the appearance of the transient difference spectra owing to both the azulene triplet and radical cation absorptions being outside the spectral range studied.

\subsection*{Electron Transfer Kinetics}

The kinetics of electron transfer for 9-anthracencarboxylic acid / perylene systems in both the presence and absence of varying loadings of azulene on silica gel have been measured following laser excitation at 355 nm. The kinetic data was analysed as in previous publications13,14 using the dispersive kinetic model of Albery et al50 which provides analytical parameters with which to characterise the decay or (in the case of perylene) rise rate constant as a function of concentration.

The extracted parameters are then analysed to yield a bimolecular rate constant characteristic of the process according to equation 2:

\[\bar{k} = \bar{k}_0 + k_q[\text{quencher}] \]

where \bar{k}_0 is the unquenched decay rate constant, and k_q is the bimolecular quenching constant. Fig. 2 shows a plot of fitted \bar{k} versus quencher concentration for electron transfer in the 9-anthracencarboxylic acid / azulene / perylene system. The addition of azulene to the system decouples the decay of the anthracene radical cation and the rise of the perylene radical cation. The rate of electron transfer from the azulene to the 9-anthracencarboxylic acid radical is very rapid due to the large diffusion coefficient for the azulene on silica gel. As we have shown in a previous publication14, molecular size plays a role in determining diffusion coefficients on silica gel, and hence the rate of diffusion of the azulene is significantly faster than that of the perylene. Given the 9-anthracencarboxylic acid is, as previously demonstrated, hydrogen bonded and therefore fixed to the silica gel surface, the rate of electron transfer is governed in part by how quickly the azulene diffuses across the silica gel surface, and as shown previously14 there are also energetic considerations (vide infra).
In the absence of azulene the bimolecular rate constant for both perylene radical cation formation and 9-anthracenecarboxylic acid radical cation decay are the same to within experimental error, and the electron transfer rate in this case is governed by the rate of diffusion of the perylene. The introduction of azulene to the system causes the bimolecular rate constants for both the formation of perylene radical cation and the decay of the anthracene radical cation species to increase, but not to the same extent as would be the case if the mobility of the azulene radical were the same as for free azulene and this alone was the determining factor in the electron transfer rate. However, were the azulene radical to be immobile on the surface there may be expected to be no enhancement to the perylene rise kinetics on addition of azulene based on purely diffusional arguments. As previously mentioned, energetic factors have been shown to influence electron transfer rates and a Marcus dependence was shown for a range of electron donors4,14. In this instance the oxidation potential of the perylene (0.92 V vs Ag/AgCl56, relative to 1.26 V for anthracene and 1.04 V for azulene versus the same reference electrode14) is such that the free energy for electron transfer between the azulene radical cation and perylene is lower than that between the anthracene radical cation and perylene, which would suggest that on energetic grounds electron transfer between the former two should be slower than between the latter (see figure 8 in reference 14).

Additionally the similarity in free energy for electron transfer in the 9-anthracenecarboxylic acid / azulene and 9-anthracenecarboxylic acid / perylene couples shows that the slow rate of electron transfer in the anthracene / perylene system is a result of slow diffusion by the perylene rather than being dominated by energetic considerations. Therefore the observed increased rate of electron transfer to perylene observed in the presence of azulene must be ascribable to considerable mobility of the azulene radical cation, where diffusion of the azulene radical to the perylene is faster than diffusion of the perylene to the azulene radical. Even allowing for energetic effects, however, the rate of diffusion of the azulene radical is less than that of the free azulene, since an order of magnitude reduction in the electron transfer rate would not be expected on energetic grounds alone. However, it clearly has a larger diffusion coefficient than perylene demonstrating the complex interaction of parameters which determine diffusion rates on silica gel. A summary of the measured bimolecular rate constants are given in Table 1.

The table shows that the introduction of azulene in the perylene / 9-anthracenecarboxylic acid system greatly increases the rates of electron transfer in this ternary system, demonstrating the effectiveness of a small molecule as a shuttle of, in this instance, a hole between two relatively immobile species separated by a relatively large distance. This constitutes to our knowledge the first unambiguous demonstration of the mobility of radical cations on the silica gel surface, and also the first demonstration of a molecular shuttle of this type in an amorphous system.

Table 1 Bimolecular rate constants for electron transfer between azulene (Az) and the 9-anthracenecarboxylic acid (An-9-CA) radical cation and perylene (Pe) and the azulene radical cation, where x denotes the fact that the concentration of that species is changing.

\[
\begin{array}{|l|l|l|}
\hline
\text{System} & \text{Perylene}** \text{rise} 530 \text{nm} & \text{Anthracene}** \text{decay} 710 \text{nm} \\
\hline
\text{1 An-9-CA : x Pe} & 8.3 \pm 0.8 \times 10^7 & 6.5 \pm 0.8 \times 10^7 \\
\text{1 An-9-CA : x Az : 1 Pe} & 1.1 \pm 0.2 \times 10^9 & 1.4 \pm 0.3 \times 10^{10} \\
\hline
\end{array}
\]

Conclusions

We have demonstrated electron transfer in this ternary system using azulene for hole transfer between 9-anthracenecarboxylic acid radical cation as an electron acceptor and perylene as an electron donor. The radical cation species of both perylene and 9-anthracenecarboxylic acid can be seen in the transient absorption spectra. The absorption bands are well separated from one another as well as that of the triplet excited states of the parent species and hence their kinetics can be independently measured.

The presence of an azulene molecular hole shuttle has been shown to substantially enhance the rate of electron transfer. From comparison of bimolecular rate constants and consideration of possible energetic influences, mobility of the azulene radical cation is clearly demonstrated, with its rate of diffusion being still rapid relative to perylene even though it is shown to be slower than for the neutral azulene species.

This study shows the potential of such shuttles as electron transfer catalysts and offers a means of controlling charge separation times in these systems.

Notes and references