Inferring air-water temperature relationships from river and catchment properties

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

• This is the accepted version of the following article: JOHNSON, M.F., WILBY, R.L. and TOONE, J.A., 2014. Inferring air-water temperature relationships from river and catchment properties. Hydrological Processes, 28 (6), pp. 2912 - 2928 which has been published in final form at: http://dx.doi.org/10.1002/hyp.9842

Metadata Record: https://dspace.lboro.ac.uk/2134/16257

Version: Accepted for publication

Publisher: © John Wiley & Sons, Ltd.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Inferring air-water temperature relationships from river and catchment properties

Johnson MF¹, Wilby RL¹, Toone, JA²

¹ Department of Geography, Loughborough University, Leicestershire, LE11 3TU, UK.
Email: m.f.johnson@lboro.ac.uk; r.l.wilby@lboro.ac.uk

² Environment Agency, Trentside Office, Nottingham, NG2 5FA, UK.
Email: julia.toone@environment-agency.gov.uk

This is the peer reviewed version of the following article:

which has been published in final form at:

This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
Abstract:
Water temperature (Tw) is a key determinant of freshwater ecosystem status and cause for concern under a changing climate. Hence there is growing interest in the feasibility of moderating rising Tw through management of riparian shade. The Loughborough University TEmperature Network (LUTEN) is an array of 36 water and air temperature (Ta) monitoring sites in the English Peak District set up to explore the predictability of local Tw, given Ta, river reach, and catchment properties. Year one of monitoring shows that 84 to 94% of variance in daily Tw is explained by Ta. However, site-specific logistic regression parameters exhibit marked variation and dependency on upstream riparian shade. Perennial spring flows in the lower River Dove also affect regression model parameters and strongly buffer daily and seasonal mean Tw. The asymptote of the models (i.e., maximum expected Tw) is particularly sensitive to groundwater inputs. We conclude that reaches with spring flows potentially offer important thermal refuges for aquatic organisms against expected long-term warming of rivers and should be afforded special protection.

Key words: climate change; water temperature; riparian shade; logistic regression; springs
INTRODUCTION

Water temperature (Tw) has major ecological significance, not least for water quality (through dissolved oxygen levels and reaction rates), and hence for compliance with environmental regulation (such as the European Union Water Framework Directive). In addition, Tw variation and duration above critical thresholds affect fish behaviour and survival (Elliott et al., 1995; Jonsson et al., 2001; Webb and Walsh, 2004; Hari et al., 2006; Wehrly et al., 2007). Tw also influences the growth, metabolism and timing of emergence of aquatic invertebrates (Briers et al., 2004; Durance and Ormerod, 2007). Over the next century, air temperature (Ta) is expected to rise and with it Tw (Hulme et al., 2002; Kaushal et al., 2010; van Vleit et al., 2012). Higher mean and peak Tw could cause harm to ecological communities in freshwaters and has, consequently, attracted the attention of regulatory bodies such as the Environment Agency (2012). As a result, there is growing interest in the thermal dynamics of rivers, in particular, the spatial and temporal variability of Tw, and ways of alleviating rising temperatures by, for example, creating thermal refugia or identifying habitats that are particularly susceptible to heat stress.

The most important controls of river Tw are solar radiation and discharge. The former governs the diurnal and seasonal variations in thermal energy. The latter reflects the dominant hydrological pathways and thermal inertia (due to mass) of water heated (Poole and Berman, 2001). Other natural sources of heat, for example, generated by channel-bed friction or flux due to liquid precipitation, are relatively minor in most fluvial systems (Webb and Zhang, 1997; Hannah et al., 2008; Webb et al., 2008; Ouellet et al., 2012). In addition, Tw is strongly affected by temporal and spatial variations in discharge linked to the annual water cycle and tributary flows. Hyporheic (near surface) and phreatic (deep groundwater) inputs add further to the heterogeneity (Constantz, 1998; O’Driscoll and DeWalle, 2006). Phreatic sources typically have relatively constant Tw and can have a more damped response to climate variations than the hyporheic contributions to channel flow. Overall, in the absence of major tributaries and spring flows, Tw generally increases with distance downstream as the water body experiences net gains of radiant energy.

It is not feasible to monitor energy budget components for long periods or at all points in a river network. For instance, remotely sensed, thermal imagery provides high spatial-resolution but only snap-shots of Tw in time (e.g., Torgesen et al., 2001). Therefore, spatially and temporally varying Tw is often estimated from deterministic or statistical models using
basic meteorological and hydrological information (Yonus et al., 2000; Johnson, 2003; Caissie, 2006; Lee et al., 2012). Although air-water temperature relationships are typically strong, the correspondence is not direct as T_a has a small effect on sensible heat flux (Stefan and Preud’homme, 1993; Webb and Nobilis, 1997; Johnson, 2003). Instead, the correlation between T_a and T_w is due to incoming solar radiation and outgoing long-wave radiation simultaneously affecting the thermal dynamics of air and water bodies. The power of this relationship is strongest at monthly- and weakest at sub-daily time-scales (Stefan and Preud’homme, 1993; Caissie, 2006) as other factors, such as riparian shading, become increasingly important.

Linear regression analysis is widely used to model T_w from T_a (e.g., Mackey and Berrie, 1991; Stefan and Preud’homme, 1993; Imholt et al., 2012). However, the T_a-T_w relationship is known to depart from linearity at extreme T_a. Vapour pressure grows near-exponentially as temperature increases evaporation and latent cooling thereby imposing an upper limit on T_w in rivers (Mohseni et al., 2002). Non-linearity at low air temperatures arises because T_w is buffered by hyporheic and phreatic water and only freezes when T_a drops substantially below 0°C (Crisp and Howson, 1982). As a result of these effects, Mohseni et al. (1998) assert that the relationship between weekly T_a and T_w is best described by a logistic function.

Although discharge and solar radiation are the main drivers of T_w, there are many other catchment and meteorological influences on T_w dynamics. For example, shading of water by cloud cover, the landscape and riparian vegetation reduces warming by solar radiation (Rutherford et al., 2004; Malcolm et al., 2008). Previous studies have identified factors that control T_w regimes at a range of scales and these are often used as dependent variables in regression models of T_w (Webb and Walling, 1986; Lewis et al., 2000; Rutherford et al., 2004; Bourque and Pomeroy, 2001; Malcolm et al., 2008; Webb et al., 2008; Hrachowitz et al., 2010). These include the geological, hydrological, topographic and climatic characteristics of the catchment as well as anthropogenic alterations to land use, river regime and thermal loads.

Of particular interest and potential importance to T_w is the shade afforded by riparian vegetation, which may moderate warming under a changing climate. Riparian vegetation reduces the amount of solar radiation reaching the channel and limits heat exchange with the atmosphere by reducing wind speeds and decreasing convection and advection from the water.
surface (Naiman et al., 1992; Li et al., 1994; Story et al., 2003; Rutherford et al., 2004; Moore et al., 2005). The potential for vegetation to reduce Tw has been shown by experimental studies. For example, Johnson (2004) artificially shaded a 200 m reach of river in HJ Andrews Experimental Forest, Oregon, USA and found that under full sun there was a net energy gain of 580 W m$^{-2}$ but under full shade there was a net loss of 149 W m$^{-2}$. However, establishment and maintenance of riparian vegetation can be expensive and carries some risk by increasing channel roughness and local flood levels. Flood hydraulics may also be affected by large woody debris that can damage or build-up behind structures, impeding the flow. However, riparian vegetation has many ecological benefits (Everall et al., 2012), and is increasingly regarded as an attractive option for thermal management of freshwater systems (Environment Agency, 2012).

Sites susceptible to Tw change or conducive to management need to be identified in order to maintain favourable thermal conditions for existing freshwater ecosystems. The Loughborough University TEtemperature Network (LUTEN) is a dense array of Ta and Tw monitoring sites in the English Peak District set up with these practical needs in mind (Toone et al., 2011; Wilby et al., 2012). This paper uses data from LUTEN to test methods of predicting Tw at reach-scales (metres) from spatially coarse Ta measurements, air-water temperature relationships, and catchment properties. We intentionally keep data requirements to a minimum to mimic the information that might be available to field officers and management agencies. First, we describe measured Ta and Tw dynamics, and correlations within the Rivers Dove and Manifold. Second, we evaluate regression models for predicting Tw from Ta measured at instrumented sites. Third, we assess the extent to which regression model parameters can be inferred from reach and catchment properties. We conclude with a discussion of the importance of vegetation and hydrological controls on thermal refuges in the rivers.

FIELD SITES AND DATA

Catchment characteristics and instrumented reaches

The instrumented reaches of the River Dove and Manifold have catchment areas of 131 km2 and 75 km2 respectively. Both river channels are of similar dimensions, ranging from 1–12 m in width. The catchments are adjacent with comparable meteorological conditions, including average annual precipitation in excess of 1000 mm/year. Both rivers are situated in an upland area with altitude range of 154 m (at their confluence) to 450 m above sea level. Both run
predominately through gravel drift deposits underlain by mudstone, siltstone and sandstone of
the Millstone grit group. The River Dove also flows parallel to an outcrop of Carboniferous
limestone for much of its length and both rivers eventually intersect this outcrop at their
downstream ends (Figure 1). The headwaters are characterised by relatively open valleys
whereas downstream limestone reaches feature deep gorge sections. The limestone outcrop
denotes a zone of substantial groundwater inputs, including several large non-thermal and
semi-thermal springs (Edmunds, 1971; Abesser and Smedley, 2008).

Both catchments are predominantly moorland and grazed pasture, stocked with cattle and
sheep. Woodland constitutes only 5% of the catchment area but there are reaches with
substantial tree cover of predominantly Ash (*Fraxinus excelsior*), particularly in the Dove.
The rivers are highly sinuous but some reaches have been artificially straightened to protect
agricultural land (Dalton and Fox, 1988; Rice and Toone, 2010). This is particularly evident
in the Manifold which has actively eroding banks at many sites, requiring revetments and
makeshift bank protection by land-owners. In addition, flows in the lower reaches of the
River Dove (sites D17 to D24) are affected by more than 100 weirs. Most are less than 0.5 m
high and were installed to increase the feeding area for trout to benefit anglers. A summary of
key channel and landscape metrics is presented by Table 1.

Deployment and accuracy of temperature sensors

LUTEN consists of 36 sites with average spacing 1.7 km along the Rivers Dove and
Manifold in the English Peak District (Figure 1). At each site, both Ta and Tw are
continuously monitored using Gemini *Tinytag* Aquatic 2 thermistor data loggers. Tw is
monitored by loggers attached to weights that are buried in riffles so that the instrument is
flush with the river bed surface. Previous work suggests that the effect of bed conduction is
minimal (Neilson et al., 2009). Ta is monitored via *Tinytag* thermistors attached to the north
face of a tree close to the Tw sensor, approximately 2 m above the water surface. This logger
array has been recording temperature every 15 minutes since 1st March 2011.

Tinytag thermistors are factory calibrated and tested. Nonetheless, we checked the calibration
and consistency of readings between sensors by performing additional tests. A set of field-deployed sensors was placed in a shaded, controlled environment subject to natural diurnal
water temperature cycles. Over the course of five days the largest discrepancy in maximum
15-minute Tw between the sensors was 0.2 °C (standard error = 0.03 °C). Daily mean and
maximum values did not differ by more than 0.1 °C. In addition, a Fisher Scientific Traceable Digital Thermometer with 0.05°C accuracy was used to check a further five sensors and, all were within 0.15 °C of the Tinytag Tw. Spot checks of Tw are also made at each data download (approximately four times per year) to further check logger accuracy. Overall, we confirm the manufacturer’s view that thermistor accuracy is within ±0.2 °C.

Practices for shielding thermistors from solar radiation vary enormously (even between studies published by Hydrological Processes). Some place temperature probes within white PVC tubing to prevent direct exposure to sunlight (Hrahowitz et al., 2010); some stake unshielded sensors to the channel substrate (Broadmeadow et al., 2011) or glue them to large rocks (Isaak and Horan, 2011); others do not explicitly mention shielding (Hannah et al., 2008). We considered the range of options and took a middle approach. Although our sensors were not artificially shielded, they were carefully obscured by local cliff faces, channel shade and riparian cover to minimise the influence of direct solar radiation, as well as the risk of theft or interference. Moreover, the wider landscape provides deep shade for much of the year at many sites (Table 1).

We also tested the effect of tube shielding under laboratory conditions with and without flow, for clear, shallow (20 cm) water, with a 100 W m⁻² light source directly overhead. Under these extreme conditions maximum and mean differences between shielded and unshielded sensors were respectively 0.15 °C and 0.12 °C (n =12) for still water. Under steady flow conditions (0.2 m s⁻¹) within a flume the corresponding values were 0.05 °C and 0.03 °C (n=12) (Johnson and Wilby, 2013a). In 6 out 12 flume runs, the shielded sensor was marginally warmer than the unshielded device (reflecting the limits of inter-sensor accuracy). Therefore, given the micro-siting precautions, and assessed shielding effects, we conclude that our Tw measurements are still accurate to within the manufacturer’s range of ±0.2 °C.

Unshielded Ta sensors attached to the north side of trees are potentially affected by micro-meteorological factors, and periods of direct solar radiation. Orbital geometry determines that at the latitude of the Dove and Manifold the sun is in the northern hemisphere for less than 10% of the time and, even then, at a low angle above the horizon. When taking into account local landscape and canopy shading, the risk of direct heating of sensors is reduced still further. The large number of Ta sensors enables cross-checking between sites, and quality assurance was performed using data from the nearest Met Office station (Buxton, 53° 15’N, 1° 55’ W).
The elevations of D3 and Buxton (307 m) are almost identical as are their respective mean annual air temperatures: 9.0 °C and 9.3°C respectively (see Table 1).

Correlation coefficients for maximum daily Ta at Buxton versus LUTEN range from 0.89 to 0.97 in the Dove, and from 0.92 to 0.97 in the Manifold. The largest anomalies at our two reference sites (see below) are all cool biases (i.e., higher Ta are recorded at Buxton than on the river side). These differences can be interpreted in several ways: a modest heat island effect at Buxton; local variations in cloud cover or precipitation; katabatic winds and other micro-meteorological effects in the deep limestone gorges; or cooling by vegetation. However, occasional cool outliers in LUTEN Ta are not consistent with direct solar heating of sensors. Hence, we conclude that our Ta and Tw measurements are fit for the purpose of interpreting water temperature variations within the two catchments.

Following the protocols recommended by Sowder and Steel (2012), downloaded Ta and Tw data were visually checked for missing data and gross outliers. During April and May 2011, three sites in the Manifold had very low flow, leaving loggers exposed. This was apparent from the convergence of Tw and Ta values. Typically, Tw data from submerged loggers have daily ranges between 20 to 50% of the Ta range, whereas exposed sites had ranges between 70% and 100% the Ta range. Therefore, any Tw data with ranges >70% of Ta were deemed to be de-watered and flagged as suspect. Some sensors were later lost during high flow episodes in autumn 2011 and winter 2011/12, leaving gaps in the record. Sensors with less than 90% complete record were excluded from further analysis.

Environmental characteristics of monitored reaches

The environmental characteristics of reaches between monitoring sites were quantified using field and desk-based techniques (Table 1). Bank full width and depth were collected during a fluvial audit of the rivers by Rice and Toone (2010) and were averaged for the river reaches falling between our monitoring stations (Figure 1). Distance from source was defined as the channel length between the monitoring site and river source, estimated from a GIS model and field-validated Ordnance Survey maps. Site altitude, reach length, sinuosity, and channel slope were determined from the same GIS-model, which incorporates a 5 m resolution Digital Elevation Model (DEM). Following Hannah et al (2008) upstream catchment area was used as a proxy for gauged river flow.
Two metrics of topographic shade were generated using the DEM and solar geometry: the percentage of time monitoring sites were exposed to direct solar radiation; and the percentage of potential solar irradiance that reaches the channel each year (Johnson and Wilby, 2013b). Note that differences between time in shade and potential irradiance arise because shading mainly occurs at low solar angles, when there is less solar radiation. Note also that this metric of topographic shade does not capture micro-scale features, such as channel banks, or variations in cloud cover and water vapour which potentially reduce the amount of light received. Consequently, the values in Table 1 should be viewed as the maximum possible potential irradiance of each site and lower bound for time in shade.

Shading by vegetation was assessed using aerial photographs overlaid onto Ordnance Survey maps in the GIS model. The length of river reach between monitoring sites that fell into each of the following four, discrete categories of riparian shade was measured (Figure 2):

1. None: the channel is clearly visible from photographs and has no riparian shade.
2. Patchy: the channel is visible but discontinuous tree cover occurs along the banks.
3. Linear: the channel is partly obscured by narrow bands (or single lines) of trees along the banks.
4. Complete: the channel is entirely concealed by continuous, dense tree cover on the banks.

The four groups were merged into two categories for later analysis. The first, ‘open’, includes ‘none’ and ‘patchy’; the second, ‘shaded’, includes ‘linear’ and ‘complete’. A distinction is made between local and cumulative shade. Table 1 reports the local riparian cover, defined as the percentage of upstream reach length classified as shaded. This differs from cumulative shade which is the percentage of total upstream lengths classified as shaded. Both are employed in the correlation analysis below.

The influence of groundwater on Tw in the lower Dove was surveyed at sites in the main channel and at visible spring heads (Figure 3). Conductivity, pH and Tw were obtained from spot measures at monitoring sites every three months during the first year of monitoring (March 2011 to February 2012) (Table 1). In addition, spot measures were made upstream, downstream and within known spring flows every other month since July 2012. Although a considerable volume of flow is assumed to be gained by the main channel from groundwater (Edmunds, 1971), only substantial surface springs were monitored. The exceptionally wet summer and autumn of 2012 provided a rare opportunity to locate active springs, including
some that are not shown on Ordnance Survey maps. Furthermore, we cross-compared our
inventory of surface springs with other surveys of the Dove (Edmunds, 1971; Brassington,
2007; Abesser and Smedley, 2008).

All the variables listed in Table 1 were correlated with the parameters of regression models
for Tw based on Ta, computed below.

STATISTICAL METHODS

Regression analysis

Linear and logistic regression models were calibrated using 12 months of daily-mean and
daily-maximum Ta and Tw since 1 March 2011. The form of the logistic regression is a
three-parameter model following Mohensi *et al.* (1998):

\[Tw = \frac{\alpha}{1 + \exp[\gamma(Ta - \beta)]} \]

(1)

The three logistic regression parameters \(\alpha \), \(\beta \), and \(\gamma \) are all physically interpretable and have
units in °C. The upper asymptote (\(\alpha \)) of the model is the maximum Tw that the model can
predict. The inflection point of the curve (\(\beta \)) represents the region of Ta with the greatest rate
of change of Tw. The gradient of the model at the inflection point (\(\gamma \)) gives the day to day
increase of Tw for a unit increase in Ta. The value of these parameters is hypothesised to be
dependent on the environmental and thermal characteristics of the upstream river network.

Consequently, the three regression parameters at each site were correlated with reach and
catchment properties to determine whether generalised patterns might exist.

Spatial and temporal autocorrelation analyses

The Durbin-Watson test was used as a diagnostic of autocorrelation in regression model
residuals. In addition, daily-maximum Ta and Tw were investigated for inter-site correlations.
Tw at each site was correlated against Tw measured at all other sites and plotted against the
separation distance between sites (Figure 4). This was also repeated for Ta in order to assess
the level of heterogeneity in temperature along the river network.

The spatial homogeneity of Ta (see Figure 4) supports the view that regression models can be
built using a single representative record rather than local Ta series. On the Dove, site D10
was considered the most representative Ta series as this site has the highest average
 correlation with other Ta measures (r = 0.95 to 0.99). On the Manifold, M8 was the most
 representative. Hence, logistic regression was performed using these single, representative Ta
 series as independent variables and site-specific Tw measures as dependent variables.

RESULTS

Regression model evaluation

The weakest linear regression model explains 78% of the variance (R^2) in daily mean Tw at
site D18 (Table 2). The logistic model was consistently better at relating daily Tw to Ta at all
sites. As maximum Tw are considered to be of greater ecological significance they are used
in all subsequent analysis of the logistic regression model. The R^2 of these models range from
87% to 94% and values of the three regression parameters are given in Table 3. Figure 5
shows examples of logistic regression models at illustrative sites in the Dove.

The Durbin-Watson statistic confirms that there is positive, first-order autocorrelation in
regression model residuals (Figure 6). Clear seasonal variations in residuals emerge with
models consistently under-estimating summer Tw and over-estimating winter Tw. The
residuals are not correlated with river discharge but there is a spatial signature. In general,
downstream sites are more affected by autocorrelation than upstream sites. However, there
are exceptions to this trend in both rivers and the River Dove is more heterogeneous in terms
of autocorrelation than the Manifold (Figure 7). In particular, there are step changes in inter-
site correlation at sites D11, D16 and D23.

All regression models were validated using daily Tw over the first five months of the second
year of data collection (1 March 2012 onwards). April to July 2012 was the wettest on record
for England and Wales (going back to 1766) with more than 200% the 1971-2000 average
precipitation (CEH, 2012). This produced high river flows for extended periods. Despite
these extreme conditions, the models performed well at all sites, with R^2 between 0.60 and
0.90, and an average reduction in explained variance between the calibration and validation
periods of 0.12 (Table 3). Note that autocorrelation effectively reduces the sample sizes of the
regression models so the reported R^2 statistics should be interpreted as upper bound. The
average standard error of the logistic model was 1.3°C for calibration and 1.7°C for
validation.
Plots of predicted versus observed Tw during the validation period had slopes between 0.40 and 1.04 and intercepts typically in excess of 2°C. Further analysis of the best fit line reveals that most models over-estimate Tw below 8°C and under-estimate Tw above 8°C. However, this is location specific with sites in the Manifold generally over-predicting a greater range of temperatures. There are also exceptions, such as D4, which over-estimates all temperatures above 0°C. In addition, Tw appears to be over-estimated by the model during high flow events at the most downstream sites.

Spatial and temporal variations in Ta and Tw

Daily-mean Tw follows the anticipated seasonal trend of highest values in summer and lowest during winter. Summer Tw is usually cooler than Ta; conversely during winter Tw often exceeds Ta. When averaged across the entire year, Tw is greater than Ta at all sites with the exception of D4 and M2 (Table 1). Differences between mean Tw and Ta are partly explained by missing data. However, differences are also expected given the hydrogeology of the region. Several sources mention geothermal heating of deep groundwater and semi-thermal springs in the Dove (Edmunds, 1971; Gunn et al., 2006; Brassington, 2007; Abesser and Smedley, 2008). Table 4 provides an inventory of ephemeral and perennial springs identified from repeat field surveys and secondary sources. The semi-thermal spring at Beresford Dale (S9 in Table 4, near D17 in Table 1) stands out from the other surface springs which typically have Tw in the range 8 to 10 °C. Downstream of D17, thermal inertia, semi-thermal groundwater inflow, and ponding behind weirs could all be contributing to elevated Tw compared with Ta.

Contrary to expectations, there is no clear increase in Ta with distance downstream despite a decline in altitude of nearly 200 m. However, there is a general downstream rise in Tw in both rivers. The annual range of Tw also increases with distance downstream and is greater for sites on the Manifold than the Dove (Figure 8). The greatest range was 22.8 °C at M16 with a minimum temperature of 0.1°C on 4th February 2012 and a maximum of 22.9 °C on 15th July 2011. The downstream increase in Tw range is interrupted at a number of sites and, when disaggregated by season, declines with distance downstream in winter and spring. The greatest reduction in Tw range is at the most downstream site on the Dove (D23) where Tw range is only 8.0°C. This is attributed to the buffering of Tw by perennial groundwater flows upstream of this site.
As noted above, Ta and Tw were relatively homogenous along both rivers (Figure 4). In the Manifold inter-site correlations (r) for Tw were greater than 0.98 and more homogenous than Ta. The Dove has slightly lower correlations but still above 0.90 for Tw, and 0.92 for Ta. Therefore, Tw in the Dove is more spatially heterogeneous than in the Manifold, with D23 in particular being thermally distinct from upstream sites (Figure 4, open circles).

Estimation of logistic parameters from environmental characteristics

Regression models have strong explanatory power, but it is clear from Table 3 that models are site-specific because they have substantially different parameters for each location. As reported by Mohensi *et al.* (1998), α and β are strongly correlated (r = 0.95) and, therefore, only one needs to be related to environmental parameters in order to generalise the regression model. Conversely, γ is not correlated with the other parameters and must be independently related to environmental factors. Most catchment characteristics in Table 1 were weakly or uncorrelated with regression parameters. This includes distance from source and altitude (respectively r = 0.49 and 0.46), implying that regression parameters do not follow simple downstream trends in these rivers. The only statistically significant (p < 0.001) relationship identified was between γ and cumulative downstream riparian shade (Figure 9). In contrast, riparian shade had weak explanatory power in relation to both α and β (R² = 0.3 and 0.2, respectively). Toone *et al.* (2011) previously noted a link between weaker forcing of Tw by Ta at sites with low turbidity (a proxy for groundwater inflow).

DISCUSSION

Spatial and temporal heterogeneity of Tw

Seasonal variations in Ta and Tw are evident at all sites, although these are less pronounced in areas of groundwater input, and near river sources. Perennial buffering by groundwater, particularly at site D23, substantially alters the thermal regime, reducing the range in Tw. At site D23, the annual range of Tw is only 8°C compared with 16°C at D22, just 1.5 km upstream. Surveys of water emanating from springs in Dovedale show relatively constant temperature, reducing both daily and seasonal variations in Tw (Figure 3), consistent with other studies (Webb and Zhang, 1999; Story *et al.*, 2003; O’Driscoll and DeWalle, 2006).

Our surveys suggest that the transition between perennial and ephemeral spring flow occurs around 200 metres above sea level (Table 4). Upstream of D20, Tw is raised in winter by relatively warm spring flows (S1 to S10); conversely there is no cooling effect in summer.
when spring flow ceases. This has the net effect of raising annual average T_w (see Table 1).

The different regimes of ephemeral and perennial springs may also explain the lack of correlation between conductivity (an indicator of spring flow) and regression parameters. The input of groundwater acts much the same as the input of water from tributaries, creating a discontinuity in downstream trends, and increasing spatial heterogeneity of the thermal regime, as evidenced by the lower inter-site correlations in the Dove (Figure 4).

The Manifold exhibits marked seasonal and longitudinal patterns in T_w, with high similarity between sites, whereas the Dove is more complex both temporally and spatially. For example, the difference in annual-mean maximum T_w between the most upstream and downstream sites in the Manifold indicates T_w increases by 0.05 °C/km. In summer (June to August) the warming is 0.14 °C/km and in winter (December to February) it is 0.05 °C/km. However, in the Dove, there is a cooling rather than warming trend due to the local groundwater effects at site D23. If the same analysis is performed for sites D1 to D22, immediately upstream of D23, the warming trend is 0.06 °C/km for the whole year, 0.11 °C/km in summer and 0.03 °C/km in winter (see Figure 8).

The similarity between the Dove and Manifold is expected given the catchments are relatively small and adjacent. Nonetheless, these findings need to be viewed with caution as the positioning of sites will affect the results as the Manifold is monitored for a shorter length that begins 3.6 km from the river’s source, in comparison to the Dove which is monitored from only 1.8 km from the source. Although our results support findings of other studies showing that spatial variations in T_w are most pronounced in summer (Imholt et al., 2012), our values are relatively low compared with other small- to medium-sized rivers (3 to 15 m width) which warm by 0.07°C/km (Torgersen et al., 2001) to 0.6°C/km (Zwieniecki and Newton, 1999). These differences may reflect site locations as well as regional variations in catchment and meteorological properties.

Regression model skill

Linear T_a-T_w regressions have strong explanatory power that is only marginally less than the three-parameter, logistic regression reported elsewhere (e.g. Mohensi et al., 1998). In addition, α- and β-parameters in the logistic regression are strongly correlated ($r = 0.95$), which questions the value of a three parameter model. However, linear regression does not reflect the non-linear physical relationship between solar radiation and T_w as the former
implies that Tw never reaches an upper or lower asymptote for extreme Ta. In the context of climate change, extreme Tw values are often of great interest and it is at the end members that differences between the linear and logistic regression models are most pronounced.

Predicting Tw from Ta using regression-based models is straightforward for the studied rivers. The homogeneity of Ta across the catchments also meant that there was little benefit in using site-specific Ta measurements to predict Tw. Instead, single Ta measurements were representative of the whole catchment because of strong inter-site correlations and therefore could be used with equal success as site-specific measures (as indicated by the small differences in R^2 values between Tables 2 and 3).

The Durbin-Watson test confirms autocorrelation in Ta-Tw regression model residuals but this is seldom acknowledged by other studies. In the River Dove, autocorrelation is manifested by under-estimation of Tw in summer and over-estimation in winter. Accounting for this autocorrelation would improve the explanatory power of Ta-Tw regression models. However, there is no correlation between residuals and our chosen environmental characteristics. Positive autocorrelation (i.e., day to day persistence) occurs in Tw because of the time taken for water to move through the network, incorporating a lag in the response of daily Tw to Ta. Figure 7 shows that downstream sites are affected by autocorrelation to a greater extent than upstream sites and that there is marginally greater explanatory power (for sites D13 to D22) when Ta is lagged by one day (i.e. the reduction in R^2 is negative). Local groundwater inputs in the lower Dove disrupt this general finding.

Estimation of logistic model parameters from catchment properties

Despite high explanatory power, the statistical models are site-specific. However, as the three regression parameters are physically interpretable, their values are potentially predictable from environmental gradients. This form of model has not been attempted before, but previous studies have developed multiple linear regressions to predict weekly and monthly Tw from catchment characteristics. These studies report various factors that are significantly correlated with Tw, including elevation, catchment area, percentage forest cover and hillslope shading (Imholt et al., 2012). In addition, Ozaki et al. (2003) related the slope of linear regressions between daily Ta and Tw in five rivers to catchment area.
Some factors may appear significant due to covariance amongst parameters. For example, the width-to-depth ratio is important in determining the surface area of water over which energy fluxes occur but also increases with distance downstream. In addition, parameters that are significant in one river may not be elsewhere because environmental parameters interact. For example, vegetation cover may be important in the absence of valley shade, but of less significance in rivers that are deeply incised. Shading by vegetation is also likely to be of greater significance to narrow channels in comparison to wide channels. Vegetation patch size, shape, tree density and canopy characteristics could all be used to better characterise riparian shade. Consequently, care needs to be taken in the construction of statistical models and factors need to be incorporated based on plausible, causal relationships with Tw, not based solely on the strength of correlations.

The only significant correlation found for the Dove and Manifold was between the γ parameter and cumulative riparian shade. This suggests that shade influences the responsiveness of Tw to Ta on these rivers and, hence, may provide a useful buffer against future increases in Ta. This is consistent with other studies that have found shaded reaches are cooler than un-shaded (Bowler et al., 2012) and experimental studies that show artificial shade can cool river reaches (Johnson, 2004). Broadmeadow et al. (2011) report that shade, measured as the percentage of tree cover in 30 m buffer strips along the channel edge, was significantly correlated to maximum summer Tw at a range of scales from 100 m to 1 km, but was not significantly correlated over interannual timescales.

Trees along the Dove and Manifold are broadleaved hence shading will be at a maximum in summer. This is evident in the skill of logistic regression models calibrated on bi-monthly blocks of daily mean Tw: the amount of explained variance falls in May-June, reaches a minimum in July-August, before recovering in September-October (Figure 10). This reflects seasonal emergence, fullest shade and leaf fall, affecting the strength of the Ta–Tw relationship as well as the relative contribution of groundwater sources to overall channel flow. In other words, seasonal variations in canopy shade and groundwater as a percentage of total channel flow are at their greatest in the lower Dove in the summer, hence the amount of variance explained by Ta is lowest at this time.

Strong inter-site correlations indicate that upstream Tw is very similar to that downstream, as would be expected. Lower inter-site correlations between neighbouring sites are associated
with zones of groundwater influx, especially between sites D22 and D23 (Figure 4).

Autocorrelation analysis provides a tool for evaluating local versus catchment controls of water temperature. For example, Tw at site D11 is highly correlated (r = 0.98) with D10, and is separated by 2.2 km. This implies that most of the variability in Tw at site D11 can be explained by that inherited from upstream areas. Consequently, it unsurprising that logistic regression parameters are better correlated with cumulative rather than local shading. However, the result could also be an artefact of covariance amongst variables because, in fluvial systems, many environmental factors have downstream trends related to altitude and morphological gradients. The low explanatory power of regressions between α, β and γ and distance from source and altitude suggests that this effect is limited in the Dove and Manifold.

Identifying sites that are vulnerable to warming

The homogeneity of Tw in the Manifold means it is challenging to identify reaches for mitigation and/or creation of thermal refuges. However, given the spatial uniformity in Tw it is arguably the river in greater need of management and refuge creation as increasing Ta could affect the whole river length. On the other hand, the Dove is more heterogeneous and, in the context of increased Tw, could still contain cool water habitats buffered by groundwater. Sites with perennial spring flows (Table 4) are therefore likely to be of high ecological value and should be protected from other pressures, such as cattle poaching and inputs of agricultural pollutants. Even so, rising temperatures at sites between refuges may act as thermal barriers to animal movements and more research is needed on the movement and changing distribution of animals relative to meso-scale thermal features (Torgerson et al., 1999; Ebersole et al., 2003; Stevens and DuPont, 2011). Other work shows that thermal refuges may be created at very local levels – even at habitat scales (e.g., Everall et al., 2012).

Logistic regression modelling reveals sites that are particularly susceptible to change or conducive to management. The α-parameter is the upper asymptote of the model and, therefore, indicates the maximum predicted Tw. It is clear that groundwater dominated reaches, such as D23 have much lower asymptotes than mid- and downstream reaches (Table 3). Therefore, sites of low α (high groundwater influx) may provide thermal refuge for organisms in the context of climate change. It is also apparent that, although the Manifold has higher temperatures and a greater Tw range (Figure 8), it has lower α values than the Dove at similar distances from source, indicating that the Dove has the potential to achieve greater maximum Tw than the Manifold (especially in the vicinity of sites D20 to D22). However,
there is greater uncertainty in estimated extreme values due to the limited data available for model calibration at the tails of the distribution. Confidence in these parameters will be improved by long-term monitoring and evaluation of the statistical models.

As noted before, α and β parameters are strongly correlated, but γ has little association with the other regression parameters (Mohensi et al., 1998). For example, D18 has the highest α but relatively low γ (Figure 5). This suggests that sites that have the potential to reach the highest T_w are not necessarily the most responsive to changes in mid-range T_a. It is possible that α is largely related to water inherited from upstream because this governs the heat capacity of a river. This is supported by the downstream trend in α, with lower values at the source of rivers. Variations in the downstream trend in α are associated with groundwater (D17, D23) and tributary inputs (M14), which will also substantially affect the thermal load of the river.

The γ parameter reveals sites that are most sensitive to unit warming. The Manifold has the highest γ values, indicating that it is more responsive to changes in T_a. Here, a $1^\circ C$ increase in T_a is associated with a 0.82–0.94$^\circ C$ rise in T_w at 13$^\circ C$ and a 0.24–0.34$^\circ C$ rise at 25$^\circ C$. All sites in the Dove have lower γ than those in the Manifold, especially those at D15, D16, D17 and D23 downstream of springs. Sites most responsive to T_a change are in upstream reaches of both rivers, probably because of the lower thermal inertia. It is further hypothesised that because the Manifold has less vegetation cover and valley shade it is more responsive to T_a than the Dove which has substantial shading in some reaches. This is supported by the significant correlation between γ and cumulative tree cover (Figure 9). The heavily wooded reaches in this study have γ-values \sim0.1 whereas sites in the Manifold that lack shade have $\gamma >0.18$. Vegetation explains 68% of the variance in γ suggesting that loss of shade (perhaps due to Ash die-back) could increase T_w at downstream sites.

CONCLUSIONS

We distinguish between independent variables included in site-specific regression models and those incorporated within a generalised model to infer logistic regression model parameters. Predictors of T_w, such as T_a (as a surrogate for solar radiation) and water volume should be incorporated into the site-specific models. Alternatively, controls on T_w, such as shading and width-to-depth ratio, which do not heat or cool water but effect how water is heated or cooled, should be included in over-arching models to predict regression parameters. This is because
the relationship between Tw and landscape controls is universal in the absence of river
management: the warming of a unit volume of water will always be heated by the same
degree if the amount of solar radiation is the same and all other factors are constant, including
the assumption that other heat sources are negligible (Hannah et al., 2008; Ouellet et al.,
2012). The spatial and temporal heterogeneity in Tw is due to the multitude of indirect factors,
such as riparian and landscape shading, hydrological pathways, hydrogeology, river
morphology and meteorological conditions. It is because of these controls, and uncertainty in
parameter estimation, that logistic regression parameters are not identical at all sites along
studied rivers.

This paper provides an initial feasibility assessment of generalising models of Tw. Although
only cumulative vegetative shade was significantly correlated with regression parameters (γ),
it is clear that spatial gradients are present in the logistic model parameters. There is also
strong evidence that groundwater inputs in the Dove locally alter these parameters. The next
step for LUTEN is to incorporate more detailed assessment of hydrological and landscape
controls of Tw, including higher resolution shade indices derived from valley geometry
relative to the motion of the sun (as in Lee et al., 2012). Year two of monitoring includes
periods of exceptionally wet conditions in England, providing an opportunity to test the
model under extreme weather and to investigate thermal dynamics during periods of high and
low flow. This will also be aided by an expanded network of sites, including the
instrumentation of a tributary within the Manifold and more systematic monitoring of springs.
Moreover, there is scope for further analysis and mixture modelling, including estimation of
daily water temperature ranges, or more sophisticated treatment of autocorrelation and
seasonal variations in the model residuals. However, the ultimate goal remains the
development of low-cost techniques for estimating vulnerability of river reaches and aquatic
habitats to rising temperatures based on readily available catchment information.

ACKNOWLEDGEMENTS
We thank the land-owners for granting access to the monitoring sites. We are also grateful to
the Wild Trout Trust and Trent Rivers Trust for their sponsorship. In addition, we thank
Andrew Pledger, Annie Ockelford and Julian O’Neill for field and laboratory assistance. The
constructive remarks of two anonymous referees are acknowledged too.
REFERENCES

Table 1: Reach descriptors, annual daily mean and maximum Ta, Tw, and mean conductivity, for monitoring sites on the Rivers Dove and Manifold with more than 90% complete records. Temperature and conductivity statistics are for the period 1 March 2011 to 29 February 2012.

| Site | Distance (km) | Altitude (m) | Slope | Sinuosity | Upstream weirs | Upstream catchment (km²) | Bank full (m) | Cond. (μS⁻¹) | Topographic shade % time shaded | % total irradiance* | Riparian cover (%) | Temperature (°C) | Topographic shade | % total irradiance* | Riparian cover (%) |
|------|---------------|--------------|--------|-----------|----------------|--------------------------|---------------|--------------|---------------------------------|---------------------|------------------|-----------------|----------------|------------------|------------------|------------------|
| D2 | 1.8 | 348 | 0.055 | 1.15 | 0 | 3.5 | 1.7 | 0.4 | 211 | 52 | 74 | 8.4 | 8.7 | 12.6 | 10.0 |
| D3 | 2.8 | 308 | 0.040 | 1.12 | 0 | 9.6 | 4.1 | 0.6 | 166 | 42 | 83 | 9.0 | 8.9 | 13.2 | 10.1 |
| D4 | 4.1 | 283 | 0.018 | 1.37 | 0 | 11.1 | 4.7 | 0.7 | 150 | 35 | 88 | 8.4 | 8.7 | 12.1 | 9.9 |
| D9 | 7.7 | 254 | 0.008 | 1.56 | 1 | 25.3 | 5.3 | 1.2 | 197 | 7 | 99 | 8.7 | 9.4 | 12.4 | 10.5 |
| D10 | 9.6 | 244 | 0.006 | 1.37 | 3 | 30.5 | 6.2 | 1.3 | 222 | 21 | 95 | 8.7 | 9.5 | 13.1 | 10.5 |
| D11 | 11.8 | 230 | 0.005 | 1.22 | 3 | 34.4 | 6.2 | 1.5 | 269 | 22 | 95 | 9.0 | 9.8 | 13.3 | 10.8 |
| D12 | 13.0 | 230 | 0.005 | 1.29 | 3 | 35.7 | 7.6 | 1.2 | 286 | 16 | 97 | 8.7 | 9.7 | 13.2 | 10.9 |
| D13 | 14.3 | 227 | 0.001 | 1.25 | 3 | 39.1 | 5.4 | 0.6 | 336 | 16 | 97 | 9.0 | 10.0 | 13.0 | 11.5 |
| D15 | 18.1 | 214 | 0.003 | 1.48 | 5 | 74.4 | 6.4 | 1.7 | 299 | 10 | 98 | 7.1 | 9.9 | 14.0 | 10.9 |
| D16 | 19.0 | 214 | 0.001 | 1.48 | 8 | 75.1 | 8.6 | 1.0 | 404 | 8 | 99 | 9.1 | 9.9 | 14.1 | 10.7 |
| D17 | 20.9 | 213 | 0.001 | 1.88 | 16 | 79.8 | 5.7 | 0.8 | 401 | 55 | 76 | 8.3 | 9.9 | 12.4 | 10.5 |
| D18 | 22.5 | 205 | 0.001 | 1.33 | 29 | 86.9 | 10.1 | 0.9 | 498 | 51 | 76 | 8.8 | 9.8 | 13.2 | 10.8 |
| D20 | 25.8 | 180 | 0.001 | 1.22 | 80 | 109.0 | 11.3 | 0.8 | 356 | 45 | 85 | 9.4 | 10.8 | 13.6 | 11.8 |
| D21 | 27.6 | 163 | 0.001 | 1.52 | 95 | 125.0 | 11.7 | 0.7 | 355 | 55 | 73 | 9.3 | 10.6 | 13.0 | 11.5 |
| D22 | 27.8 | 163 | 0.001 | 1.34 | 96 | 125.1 | 9.7 | 1.0 | 355 | 38 | 89 | 9.4 | 10.6 | 13.6 | 11.4 |
| D23 | 29.3 | 153 | 0.001 | 1.26 | 107 | 131.0 | 11.6 | 1.5 | 501 | 55 | 72 | 8.6 | 9.1 | 12.5 | 9.8 |
| M2 | 3.6 | 334 | 0.032 | 1.70 | 0 | 3.0 | 2.9 | 0.6 | 439 | 28 | 94 | 8.9 | 8.9 | 15.8 | 10.5 |
| M3 | 3.9 | 329 | 0.015 | 1.28 | 0 | 9.0 | 8.3 | 0.6 | 532 | 25 | 93 | 0.9 | 9.2 | 13.5 | 11.0 |
| M6 | 6.6 | 288 | 0.018 | 1.15 | 0 | 10.5 | 5.1 | 1.2 | 212 | 21 | 95 | 8.4 | 9.1 | 12.5 | 10.7 |
| M8 | 8.2 | 269 | 0.014 | 1.17 | 0 | 11.0 | 7.0 | 0.8 | 206 | 7 | 100 | 8.3 | 9.3 | 12.4 | 11.0 |
| M9 | 10.6 | 250 | 0.008 | 1.26 | 0 | 12.7 | 6.3 | 1.1 | 208 | 5 | 100 | 9.0 | 9.6 | 12.8 | 10.8 |
| M12 | 13.6 | 228 | 0.005 | 1.67 | 0 | 33.9 | 8.1 | 1.1 | 193 | 0 | 100 | 8.8 | 9.6 | 14.1 | 11.0 |
| M14 | 15.2 | 224 | 0.000 | 1.39 | 0 | 38.6 | 5.7 | 1.2 | 242 | 11 | 98 | 9.2 | 10.2 | 14.6 | 11.4 |
| M15 | 16.2 | 219 | 0.006 | 1.25 | 1 | 73.9 | 7.3 | 0.8 | 193 | 0 | 100 | 8.9 | 9.7 | 12.9 | 10.8 |
| M16 | 18.3 | 209 | 0.004 | 1.62 | 2 | 74.6 | 8.5 | 1.4 | 211 | 34 | 89 | 8.9 | 9.9 | 13.4 | 11.2 |

*maximum possible annual direct solar irradiance is 1.05 MJm⁻²
Table 2: Amount of explained variance (R²) in daily mean and maximum Tw by linear and logistic regression models using Ta as the independent variable. The best models are shown in bold. Note that these results are based on site specific Ta.

<table>
<thead>
<tr>
<th>Site</th>
<th>Linear Mean</th>
<th>Linear Max</th>
<th>Logistic Mean</th>
<th>Logistic Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>0.87</td>
<td>0.80</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>D3</td>
<td>0.91</td>
<td>0.88</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>D4</td>
<td>0.92</td>
<td>0.90</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>D9</td>
<td>0.92</td>
<td>0.88</td>
<td>0.93</td>
<td>0.90</td>
</tr>
<tr>
<td>D10</td>
<td>0.92</td>
<td>0.92</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>D11</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>D12</td>
<td>0.87</td>
<td>0.86</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>D13</td>
<td>0.87</td>
<td>0.85</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>D15</td>
<td>0.87</td>
<td>0.88</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>D16</td>
<td>0.85</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>D17</td>
<td>0.83</td>
<td>0.80</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>D18</td>
<td>0.81</td>
<td>0.78</td>
<td>0.84</td>
<td>0.80</td>
</tr>
<tr>
<td>D20</td>
<td>0.84</td>
<td>0.86</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>D21</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>D22</td>
<td>0.84</td>
<td>0.78</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>D23</td>
<td>0.86</td>
<td>0.84</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>M2</td>
<td>0.92</td>
<td>0.89</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td>M3</td>
<td>0.91</td>
<td>0.88</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>M6</td>
<td>0.91</td>
<td>0.91</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>M8</td>
<td>0.91</td>
<td>0.93</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>M9</td>
<td>0.90</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>M12</td>
<td>0.89</td>
<td>0.84</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>M14</td>
<td>0.88</td>
<td>0.85</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>M15</td>
<td>0.87</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>M16</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Table 3: Logistic regression model parameters (α, β, γ) with explained variance (R²) for calibration (1 March 2011 to 29 February 2012) and validation (1 March 2012 to 31 October 2012) periods. Four sites have insufficient data because of sensor loss during high flows in summer/autumn 2012. Note that these results are based on Ta measured at two representative sites (D10 for the Dove, and M8 for the Manifold).

<table>
<thead>
<tr>
<th>Site</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α asymptote</td>
<td>β inflection</td>
</tr>
<tr>
<td>D2</td>
<td>16.31</td>
<td>10.36</td>
</tr>
<tr>
<td>D3</td>
<td>16.73</td>
<td>10.47</td>
</tr>
<tr>
<td>D4</td>
<td>17.66</td>
<td>11.07</td>
</tr>
<tr>
<td>D9</td>
<td>19.14</td>
<td>11.13</td>
</tr>
<tr>
<td>D10</td>
<td>19.68</td>
<td>12.04</td>
</tr>
<tr>
<td>D11</td>
<td>21.93</td>
<td>13.43</td>
</tr>
<tr>
<td>D12</td>
<td>23.57</td>
<td>14.52</td>
</tr>
<tr>
<td>D13</td>
<td>23.69</td>
<td>14.18</td>
</tr>
<tr>
<td>D15</td>
<td>24.58</td>
<td>15.85</td>
</tr>
<tr>
<td>D16</td>
<td>23.45</td>
<td>15.04</td>
</tr>
<tr>
<td>D17</td>
<td>24.97</td>
<td>16.39</td>
</tr>
<tr>
<td>D18</td>
<td>29.61</td>
<td>18.25</td>
</tr>
<tr>
<td>D20</td>
<td>25.53</td>
<td>15.05</td>
</tr>
<tr>
<td>D21</td>
<td>23.69</td>
<td>14.18</td>
</tr>
<tr>
<td>D22</td>
<td>23.87</td>
<td>14.33</td>
</tr>
<tr>
<td>D23</td>
<td>14.24</td>
<td>5.17</td>
</tr>
<tr>
<td>M2</td>
<td>18.06</td>
<td>11.06</td>
</tr>
<tr>
<td>M3</td>
<td>19.95</td>
<td>11.84</td>
</tr>
<tr>
<td>M6</td>
<td>20.88</td>
<td>12.18</td>
</tr>
<tr>
<td>M8</td>
<td>22.36</td>
<td>12.67</td>
</tr>
<tr>
<td>M9</td>
<td>19.21</td>
<td>10.96</td>
</tr>
<tr>
<td>M12</td>
<td>20.52</td>
<td>11.63</td>
</tr>
<tr>
<td>M14</td>
<td>19.79</td>
<td>11.20</td>
</tr>
<tr>
<td>M15</td>
<td>20.03</td>
<td>11.45</td>
</tr>
<tr>
<td>M16</td>
<td>21.39</td>
<td>12.05</td>
</tr>
</tbody>
</table>
Table 4: An inventory of ephemeral (E) and perennial (P) springs discharging into the River Dove, showing distance downstream, spot conductivity, temperature and pH. See Fig. 3 for a longitudinal survey of spring and main channel temperatures between sites S12 and S21.

<table>
<thead>
<tr>
<th>Site</th>
<th>Name</th>
<th>Grid reference (OS)</th>
<th>Distance (km)</th>
<th>Conductivity (μS)</th>
<th>Temperature (°C)</th>
<th>pH</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Dowell</td>
<td>SK 40755 36755</td>
<td>6.2</td>
<td>612</td>
<td>8.8</td>
<td>7.9</td>
<td>E</td>
</tr>
<tr>
<td>S2</td>
<td>Glutton</td>
<td>SK 40845 36650</td>
<td>7.2</td>
<td>627</td>
<td>9.2</td>
<td>7.8</td>
<td>E</td>
</tr>
<tr>
<td>S3</td>
<td>Underhill</td>
<td>SK 40875 36645</td>
<td>7.8</td>
<td>660</td>
<td>8.2</td>
<td>7.8</td>
<td>E</td>
</tr>
<tr>
<td>S4</td>
<td>Crowdecote</td>
<td>SK 40995 36530</td>
<td>10.0</td>
<td>598</td>
<td>9.0</td>
<td>8.0</td>
<td>E</td>
</tr>
<tr>
<td>S5</td>
<td>Cow funnel</td>
<td>SK 41090 36440</td>
<td>12.0</td>
<td>607</td>
<td>10.0</td>
<td>7.6</td>
<td>E</td>
</tr>
<tr>
<td>S6</td>
<td>Ludwell</td>
<td>SK 41230 36255</td>
<td>15.0</td>
<td>645</td>
<td>9.4</td>
<td>7.8</td>
<td>E</td>
</tr>
<tr>
<td>S7</td>
<td>Sprink</td>
<td>SK 41260 36195</td>
<td>15.7</td>
<td>622</td>
<td>9.2</td>
<td>7.8</td>
<td>E</td>
</tr>
<tr>
<td>S8</td>
<td>Hartington</td>
<td>SK 41240 36045</td>
<td>18.1</td>
<td>717</td>
<td>8.7</td>
<td>7.9</td>
<td>E</td>
</tr>
<tr>
<td>S9</td>
<td>Beresford</td>
<td>SK 41275 35860</td>
<td>21.4</td>
<td>666</td>
<td>14.2</td>
<td>8.4</td>
<td>E</td>
</tr>
<tr>
<td>S10</td>
<td>Wolfescote</td>
<td>SK 41305 35845</td>
<td>21.8</td>
<td>703</td>
<td>9.4</td>
<td>8.3</td>
<td>E</td>
</tr>
<tr>
<td>S11</td>
<td>Second gate</td>
<td>SK 41410 35435</td>
<td>27.8</td>
<td>600</td>
<td>7.2</td>
<td>7.9</td>
<td>P</td>
</tr>
<tr>
<td>S12</td>
<td>Tar Pit</td>
<td>SK 41405 35415</td>
<td>28.0</td>
<td>597</td>
<td>9.0</td>
<td>7.8</td>
<td>P</td>
</tr>
<tr>
<td>S13</td>
<td>Meadow</td>
<td>SK 41405 35410</td>
<td>28.1</td>
<td>638</td>
<td>9.5</td>
<td>7.8</td>
<td>P</td>
</tr>
<tr>
<td>S14</td>
<td>Yellow pipe</td>
<td>SK 41410 35405</td>
<td>28.1</td>
<td>660</td>
<td>8.5</td>
<td>7.8</td>
<td>P</td>
</tr>
<tr>
<td>S15a</td>
<td>Scree slope A</td>
<td>SK 41415 35395</td>
<td>28.2</td>
<td>675</td>
<td>8.9</td>
<td>7.9</td>
<td>P</td>
</tr>
<tr>
<td>S15b</td>
<td>Scree slope B</td>
<td>SK 41415 35395</td>
<td>28.2</td>
<td>677</td>
<td>8.9</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S15c</td>
<td>Scree slope C</td>
<td>SK 41415 35395</td>
<td>28.2</td>
<td>638</td>
<td>9.2</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S16</td>
<td>Fallen Tree</td>
<td>SK 41420 35390</td>
<td>28.3</td>
<td>712</td>
<td>8.0</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S17</td>
<td>Stump</td>
<td>SK 41425 35380</td>
<td>28.4</td>
<td>703</td>
<td>8.1</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S18</td>
<td>Big Drop (Nabs)</td>
<td>SK 41430 35375</td>
<td>28.5</td>
<td>659</td>
<td>8.9</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S19</td>
<td>Cave</td>
<td>SK 41440 35275</td>
<td>29.8</td>
<td>600</td>
<td>9.2</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S20</td>
<td>Underpath</td>
<td>SK 41445 35270</td>
<td>29.9</td>
<td>717</td>
<td>8.4</td>
<td>7.7</td>
<td>P</td>
</tr>
<tr>
<td>S21</td>
<td>NT gate</td>
<td>SK 41445 35265</td>
<td>29.9</td>
<td>661</td>
<td>9.3</td>
<td>7.7</td>
<td>P</td>
</tr>
</tbody>
</table>
Figure 1: River Dove and Manifold catchments, including temperature monitoring sites (red circles), Environment Agency discharge gauging stations (black circles) and ecological monitoring points (green circles). The grey line marks the boundary between siltstone/mudstone areas and the Carboniferous limestone outcrop.
Figure 2: Examples of different categories of riparian shade in the Rivers Dove and Manifold.

a) None

b) Patchy

c) Linear

d) Complete
Figure 3: A longitudinal survey of main channel water temperature (upper panel) and conductivity (lower panel) for the River Dove, on 17th August 2012 compared with inflows from surface spring heads (S12 to S21, Table 4) downstream of Milldale (D21 in Figure 1).
Figure 4: Inter-site correlations for daily-maximum Ta (top row) and Tw (bottom row) in the River Dove (left column) and Manifold (right column). Open circles show correlations between Tw at D23 (Dovedale) and all upstream sites.
Figure 5: Logistic regression models for D2, D10, D18 and D23 showing local α- (horizontal dashed line) and β-parameters (vertical dashed line).
Figure 6: Comparison of residuals in predicted Tw (grey line) with observed Ta (black line) for D4 (the best Dove model) and D17 (the weakest Dove model). Scatterplots (with line of best fit) for predicted versus observed Tw are also shown.
Figure 7: Linear correlation decay between Ta and Tw in (a) River Manifold and (b) Dove with lag-interval (days). Each line represents a site. c) Spatial heterogeneity in autocorrelation showing changes in R^2 for logistic regression models with lagged and un-lagged Ta over 1, 2 and 3 days for the River Dove (grey circles) and Manifold (black squares). Negative changes in the lower Dove reveal sites where lag-1 day Ta explains more variance in Tw than lag-0 Ta.
Figure 8: Annual mean daily-maximum T_w (upper row) and T_w range (lower row) with distance from source for the Rivers Dove (left column) and Manifold (right column).
Figure 9: Relationship between local gamma parameter values of the logistic regression models in the Dove (circles) and Manifold (squares) versus length (km) of upstream riparian shade. The open circle denotes site D23, characterised by substantial groundwater flows.

\[y = -0.0064x + 0.1801 \]

\[R^2 = 0.6782 \]
Figure 10: The amount of explained variance (R^2) by regression models calibrated on non-overlapping bi-monthly periods (MA = March to April, MJ = May to June, and so forth), illustrating a weakening of the Ta – Tw relationship during summer months. Four sites are shown, indicating a general decline in summer R^2 with distance from source, noting that D23 is a site with substantial groundwater inputs (i.e., affected by both shading and spring flow).