Conditioning temperature-index model parameters on synoptic weather types for glacier melt simulations

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: MATTHEWS, T. ... et al, 2015. Conditioning temperature-index model parameters on synoptic weather types for glacier melt simulations. Hydrological Processes, 29(6), pp. 1027-1045.

Additional Information:

- This is the peer reviewed version of the article, which has been published in final form at http://dx.doi.org/10.1002/hyp.10217. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Metadata Record: https://dspace.lboro.ac.uk/2134/16271

Version: Accepted for publication

Publisher: © John Wiley & Sons, Ltd.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
NOTICE: this is the author’s version of a work that was accepted for publication in *Hydrological Processes*.

Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in:

which has been published in final form at:

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving.
Conditioning temperature-index model parameters on synoptic weather types for glacier melt simulations

Matthews¹, T., Hodgkins², R., Wilby², R.L., Guðmundsson³, S., Pálsson³, F., Björnsson³, H., Carr⁴, S.

¹ Department of Geography, National University of Ireland, Maynooth
² Department of Geography, Loughborough University, UK
³ Institute of Earth Science, University of Iceland, Iceland
⁴ School of Geography, Queen Mary University of London, UK

Corresponding author:
Tom Matthews
Department of Geography
National University of Ireland
Maynooth
Kildare
Republic of Ireland
e-mail: tom.matthews@nuim.ie
Abstract

Temperature-index models are widely favoured as a pragmatic means of simulating glacier melt due to their generally good performance, computational simplicity, and limited demands for in-situ data. However, their coefficients are normally treated as temporally stationary, unrealistically assuming a constancy of the prevailing weather. We address this simplification by prescribing model coefficients as a function of synoptic weather type, in a procedure that utilizes reanalysis data and preserves the minimal data requirements of temperature-index models. Using a cross-validation procedure at Vestari Hagafellsjökull, Iceland, and Storglaciären, Sweden, we demonstrate that applying transient model coefficients, for three temperature-index models, results in statistically-significant increases in the skill with which melt is modelled, achieving median simulation improvements in the Nash-Sutcliffe Efficiency Coefficient of 7.3% and 23.6% when hourly and daily melt totals are evaluated, respectively. Our weather-type modelling approach also yields insight to processes driving parameter variability, revealing dependencies which are consistent with a priori considerations of the Surface Energy Balance. We conclude that incorporating weather types into temperature-index models holds promise for improving their performance as well as enhancing understanding variability in coefficient values.
1 Introduction and Aims

Melting snow and ice has far-reaching and important societal consequences, not least for water and energy security of communities. Physically, the consumption of latent heat, decline in surface albedo and impact on the hydrological cycle caused by this phase change has implications for the Earth-atmosphere system as a whole. Quantifying glacier melt rates has, therefore, received much attention, with particular focus on modelling studies.

Generally, models calculate the melt rate either from principles of energy conservation (energy balance models), or from empirical associations between meteorological variables and surface melting. Most commonly, empirical formulations exploit the correlation between melt and air temperature (temperature-index models). Whilst a physical approach to melt modelling is conceptually desirable, it is often impractical to apply in practice, due to the detailed knowledge of the local micrometeorology and snow/ice surface properties demanded.

Empirical, temperature-based melt models have less stringent data requirements. Measurements of air temperature are widely available and this variable is also relatively straightforward to interpolate and forecast (Hock, 2003). Despite their simplicity, temperature-index approaches also generally perform well in melt simulations—often matching or exceeding the skill of energy balance models (Hock, 2005; Zhang et al., 2012). Thus, temperature-index models are applied widely in cryospheric research, and notably in assessing, likely future melt rates for the world’s glaciers (Raper and Braithwaite, 2006; Radić and Hock, 2011; Marzeion et al., 2012; Dobler et al., 2012). Because rising air temperature are one of the most likely consequences of anthropogenic climate change (Meehl et al., 2007; Maraun et al., 2010), these models are conceptually well placed for such application.

At their most basic, temperature-index models take the general form (e.g. Hodgkins, 2012):

\[
M = \begin{cases}
MF_{snow/ice}T & : T > T_c \\
0 & : T \leq T_c
\end{cases} \tag{1}
\]

where \(T \) is air temperature (°C), and \(T_c \) is a threshold air temperature, above which melting occurs at a rate governed by the melt factor (MF). The subscripts indicate that different values are applicable, depending on whether the melting surface is snow or ice. Time periods
of a day are frequently used for the relation described by Eq. (1): \(T \) is then averaged to daily resolution and the \(MF \) has units of mm w.e. \(°C^{-1} \text{d}^{-1} \). If a threshold of 0°C is defined, the \(MF \) is usually termed the ‘degree-day factor’ (DDF) and air temperatures over \(T_c \) are known as ‘positive degree days’ (PDDs: Hock, 2003).

More elaborate empirical formulations are provided by enhanced temperature-index models (ETIs) (Cazorzi and Dalla Fontana, 1996; Hock, 1999; Daly et al., 2000; Pellicciotti et al., 2005), which typically include a term to reflect changes in the shortwave radiation balance – the dominant source of melt energy for most alpine glaciers (Willis et al., 2002). ETI models outperform traditional approaches (e.g. Eq. 1) in inter-comparison studies by better accounting for spatial and temporal variability in melt rates (Cazorzi and Dalla Fontana, 1996; Hock, 1999; Pellicciotti et al., 2005).

Whilst provision for changes in the shortwave heat flux common to ETI models offers both a conceptual and practical improvement to temperature-index melt simulations, they have some important limitations. ETIs and their more basic counterparts usually employ temporally-static coefficients. With regard to the DDF, this treatment has long been recognized as physically unrealistic (Lang and Braun, 1990, Braithwaite, 1995; Hock, 2003), as its value depends on the SEB, and hence, on the prevailing weather. Carenzo et al. (2009) confirmed that the same is true of parameters in the Pellicciotti et al. (2005) ETI model. More recently, Carturan et al. (2012) and Irvine-Fynn et al. (2014) also highlighted the role of variable weather types as possibly responsible for the limited interannual transferability of calibrated ETI model parameters.

To reduce the detrimental effect of parameter sensitivity to weather types, Lang and Braun (1990) recommended extensive periods of integration to calibrate DDFs to obtain values more appropriate for sites’ ‘average weather’. This same reasoning can be extended to the calibration of parameters within ETI models. However, as interannual synoptic variability can be high in mid- and high-latitudes (Fettweis et al. 2011), in practice, it may be challenging to identify calibration periods representative of long-term average conditions. Moreover, in the context of climate change ‘average weather’ is not expected to be stationary, making this calibration philosophy questionable for simulations of future glacier melt.

A more conceptually appealing approach to temperature-index melt modelling would be to account for the effect of different weather types on parameters explicitly, by prescribing
transient values appropriate to the prevailing weather. However, provisioning for the effect of weather types on model parameters implies a need for additional knowledge of local micrometeorology. Such information is not necessarily available in remote locations typical of glacierized regions. Thus, practical steps to integrate the effect of weather types on temperature-index model parameters should seek to preserve their low demands for in-situ data.

In this study we show how the effect of weather types on temperature-index model parameters can be incorporated without the need for additional meteorological measurements from the glacier boundary layer. To achieve this, temperature-index models are conditioned on synoptic weather types derived from gridded climate data. The skill of weather-type-dependent models is assessed relative to unmodified temperature-index models. Variation in model parameters between weather types is also explored to gain insight to meteorological controls on their temporal evolution.

2 Data and Methods

Conditioning temperature-index model parameters by weather type requires high-resolution information on glacier melt rates and the prevailing meteorology. Details of these datasets are provided in this section, along with a description of the procedure for defining weather types and the process for evaluating the utility of transient model parameters.

2.1. Glacier melt rates

Our data are obtained from Vestari Hagafellsjökull, Iceland, and Storglaciären, Sweden. Melt rates from both glaciers are determined from SEB simulations conducted with an energy balance model. We use these data, rather than melt estimates from measurements at ablation stakes or acoustic sounders, because the latter can be prone to substantial error when converting to water equivalent melt totals at high temporal resolutions typical of ETI models (Müller and Keeler, 1969; Munro, 1990; Arendt and Sharp, 1999; Pellicciotti et al., 2005).

The meteorological measurements and SEB calculations are described in detail by Matthews (2013) and are summarised here. Ablation-season meteorological observations on Vestari Hagafellsjökull (Langjökull) have been logged hourly by automatic weather stations (AWSs) installed by the Institute of Earth Sciences, University of Iceland in 2001. One station is located in the lower ablation zone at ~500 m.a.s.l (VH 500) and the other at 1100 m.a.s.l (VH...
the approximate elevation of Langjökull’s average equilibrium line altitude. In this study, data are used from June-August 2001-2007 at VH 500 and from 2001-2009 at VH 1100. Sensor specifications are provided in Table 1, and further details of the measurement campaign can be found in Guðmundsson et al. (2009).

At Storglaciären, detailed AWS observations were made in the upper ablation area (~1387 m.a.s.l.) on the glacier during July-August 2011 (Figure 1), and more limited data acquisition took place in 2010 (Table 1). Interannual variability in the SEB can be pronounced at Storglaciären, as a result of differing weather conditions (Hock and Holmgren, 2005). Thus, we consider it valuable to extend this two-season record, to sample a wider variety of meteorological conditions. Extending our record of glacier-meteorology is made possible due to the proximity of the Tarfala Research Station (TRS), situated ~1 km from the glacier terminus in the valley bottom.

Despite the proximity of TRS to our study site, its location outside the glacier boundary layer means that judicious adjustment of measured data is required to infer glacier meteorology. The empirical functions applied by Matthews (2013) are therefore used to adjust hourly mean values of air temperature, vapour pressure, wind speed, and the incident shortwave flux recorded at TRS, to the location of the glacier-based AWS. The incident longwave flux is not measured at TRS, so it is determined for the glacier site following the expressions of Sedlar and Hock (2009). Albedo is assumed invariant outside the period of glacier-based observations and is prescribed as the mean ice albedo obtained from measurements (0.38). This treatment neglects any changes in surface reflectivity or roughness that may result from snowfall.

Parameterized meteorological series are used to infer glacier meteorology for periods when direct observations unavailable in June and August, 2005-2011 (Table 2). 2005 is chosen as the earliest year from which to use TRS data because of heterogeneity in the shortwave radiation record prior to this date (Matthews, 2013). Further information regarding the meteorological measurement campaign at TRS can be found in Grüdd and Schneider (1996) and Jonsell et al. (2013).

A summary of agreement between the meteorology observed on-glacier and that parameterized from the TRS data is shown in Table 3 using the Nash-Sutcliffe Efficiency Coefficient (R^2: see Section 2.3). With the exception of hourly means of wind speed and
incident longwave radiation, correspondence between series is encouraging. However, due to
the imperfect fit, use of these data in our energy balance simulation introduces error to our
reference melt series which will propagate to our temperature-index melt simulations.

Details of SEB computations for both sites are provided in Table 4. Models are validated by
comparing simulated cumulative water equivalent melt with totals estimated from
observations of surface lowering, which is converted to water equivalent through the
empirical formulation outlined in Hodgkins et al. (2012). Using plausible values of the
surface roughness length for momentum, taken from previous investigations at our study sites
(Guðmundsson et al., 2009; Hock and Holmgren, 1996), our energy balance models are able
to simulate melt totals, which, within estimates of their uncertainty, agree with observations
(Figure 2). No tuning of model parameters (e.g. roughness lengths) was therefore considered
necessary.

No direct observations of surface lowering are available at our study site on Storglaciären
prior to 2011 (when the SEB model is forced with the parameterized meteorological series
from TRS); hence validation of model performance is not possible for this period. To
investigate the effect of using this series, rather than the observations made at the glacier
AWS, we can compare SEB model results when simulations are forced by both series for the
period when glacier observations are available (Figure 3). The good overall correspondence
between melt simulated with these series provides confidence in the utility of using the
parameterized TRS data to extend our reference melt series. With the addition of the melt
rates calculated from adjusted TRS data, the reference melt series constitutes 434 days at
Storglaciären; the records from VH 500 and VH 1100 comprise 644 and 828 days,
respectively. All these lengths are denoted \(N \) hereafter. Summaries of the meteorology and
calculated energy components for the respective locations over these periods are provided in
Table 4.

2.2 Reanalysis data

We use gridded reanalysis data (ERA-Interim) to determine synoptic weather types (Dee et
al., 2011). The variables chosen to categorize daily weather are: two-metre air temperature
(°C); two-metre dewpoint air temperature (°C); ten-metre U component of wind speed (m s
\(^{-1}\)); ten-metre V component of wind speed (m s\(^{-1}\)); total cloud cover (fraction); and sea level
air pressure (Pa). These include most of those variables chosen frequently to characterise the
prevailing meteorology in weather-type/air-mass identifications (e.g. Kalkstein and Corrigan,
The reanalysis data were obtained at six-hourly resolution from grid cells overlying the field sites. The selected variables were transformed to z-scores and subject to a Principal Components Analysis (PCA). Five Principal Components (PCs) were retained accounting for >80% of the variance in the original variables. The six-hourly reanalysis meteorology and PC loadings were then used to determine daily PC scores following Kalkstein and Corrigan (1986). These PC scores are used to identify periods of comparable weather in the algorithm described below (Section 2.4).

2.3 Temperature-index models

Three temperature index models are deployed to investigate the utility of using melt parameters conditioned by synoptic weather types. The first is the basic melt formulation outlined in Eq. 1, referred to as Model ‘A’ hereafter. The others are ETI models, namely the algorithms of Hock (1999) (hereafter model ‘B’), and Pellicciotti et al. (2005) (hereafter model ‘C’). Our choice of models includes those used most frequently for purposes of glacier melt modelling, while differences in structure and data requirements facilitates insight into how our weather-type approach may contribute to more robust and accurate temperature-index melt simulations.

Model B has the form:

\[M = TMF \cdot T + RTMF \cdot I_o/p(1 - \alpha)T \] \hspace{1cm} 2.

and model C is:

\[M = TMF \cdot T + RMF \cdot I_o/p(1 - \alpha) \] \hspace{1cm} 3.

Where \(M \) is melt (mm w.e. hr\(^{-1}\)), \(TMF \) is the temperature melt factor (mm w.e. °C\(^{-1}\) h\(^{-1}\)), \(T \) is two-metre air temperature (°C), \(RTMF \) is the radiation-temperature melt factor (mm w.e. W\(^{-1}\) m\(^2\) °C\(^{-1}\) h\(^{-1}\)), \(RMF \) is the radiation melt factor (mm w.e. W\(^{-1}\) m\(^2\) h\(^{-1}\)), \(\alpha \) is albedo (dimensionless) and \(I_o/p \) is incident global radiation. The subscripts for this term relate to the fact that we run models A and B using actual global radiation measured/parameterized at the glacier AWSs (\(I_o \)), and using potential, clear-sky radiation (\(I_p \)) which is determined for our sites using standard equations of solar geometry (Oke, 1987), and includes the effects of shading, slope and exposition. To facilitate these calculations, topographic information from
the Koblet et al. (2010) DEM for Storglaciären and from the ASTER GDEM for Vestari Hagafellsjökull is used. Similar to Eq. 1, models B and C only permit melting when the hourly air temperature is above a threshold, which we assume to be 0°C.

The albedo required in Eqs. 2 and 3 is taken directly from observed/prescribed values at the locations of the glacier AWSs. Whilst this likely results in a favourable performance of models B and C, our aim does not include the assessment of empirical schemes for simulating albedo: using values retrieved from the AWSs enables greater focus on addressing the variability of temperature-index model parameters between weather types. The models are run with an hourly time step and all the driving meteorological variables are taken from hourly observations made at, or parameterized for, the glacier AWSs (Section 2.1).

Coefficients are calibrated for five models (three algorithms; B and C are implemented with both observed, and clear-sky global radiation) with optimal values determined using the Nash-Sutcliffe Efficiency Coefficient (Nash and Sutcliffe, 1970):

\[
R^2 = 1 - \sum_{i=1}^{h} \left(\frac{M_{ri} - M_{si}}{M_{ri} - \bar{M}_r} \right)^2, \tag{4}
\]

where \(M \) is the melt rate and subscripts \(r \) and \(s \) denote the reference series (calculated with the SEB models), and melt simulated by the temperature-index model, respectively. The over-bar in Eq. 4 indicates the mean, and \(h \) gives the number of melt values for which to evaluate goodness of fit between reference and simulated values. The objective function, 1-\(R^2 \), is minimized using the Nelder-Mead Simplex algorithm to find optimal values for model coefficients. The algorithm is implemented via the Matlab ‘fminsearch’ function and Eq. 4 is calculated for hourly melt rates.

2.4 Temporally-variable model coefficients

The core of the technique investigated is to identify meteorologically-similar days from spatially-coarse reanalysis data, and to vary temperature-index model coefficients accordingly. Similarity of weather between days is judged using the PC scores described in Sect. 2.2. For any pair of days (\(D_t \) and \(D_w \)), this is quantified according to:

\[
\delta(D_t, D_w) = \sqrt{\sum_{i=1}^{q} (v_{ti} - v_{wi})^2}, \tag{5}
\]
where \(\vec{v} \) is the vector of PC scores with \(q \) dimensions; here \(q = 5 \), because the first five PCs were retained to describe daily meteorology. Calculating \(\delta(\vec{D}_t, \vec{D}_w) \) means that archived days can be ranked according to their similarity to the prevailing meteorology. This approach underpins the nearest-neighbour resampling techniques often used to synthesize climate series from historical observations (e.g. Young, 1994; Beersma and Buishand, 2003). Here the method is used to identify periods with similar meteorological conditions to condition temperature-index model parameters.

The utility of this technique is determined through a cross-validation procedure, implemented at each location as follows:

1) For every day, \(\delta(\vec{D}_t, \vec{D}_w) \) is calculated between the present day and all other days from other years. Only days from other years are considered in application of Eq. (5), because a condition of cross-validation schemes is that the simulated data should be independent of that used for calibration (Elsner and Schmertmann, 1994). To avoid autocorrelation within the melt series compromising the cross-validation, data from the same year as the day being simulated are excluded from the fitting procedure.

2) The \(\delta(\vec{D}_t, \vec{D}_w) \) measure is used to rank all days evaluated in step one.

3) Using the reference melt series and Eq. 4, all coefficients for each temperature-index model are calibrated on the \(k \) most similar days to the present.

4) The present day’s melt is simulated at hourly resolution using the respective algorithms and the coefficient estimates obtained in step three.

Thus, all parameters for the five models are calculated \(N \) times for every location, using the \(k \) most meteorologically similar days for calibration.

The choice of \(k \) in the algorithm is evidently important. Previous research employing nearest-neighbour resampling suggests that setting \(k = n^{1/2} \) yields favourable results, provided that the number of potential neighbours, \(n \), is at least 100 and \(q \leq 6 \) (Lall and Sharma, 1996). In our cross-validation scheme, \(n \) is simply the number of days which are compared to each day on which melt is simulated, so our data satisfy these criteria (\(n \) is 552, 736 and 372 at VH 500, VH 1100 and Storglaciären, respectively). Parameter \(k \) is, therefore, set to the nearest integer of \(n^{1/2} \) in the algorithm (23, 27 and 19, respectively).
Model A requires that only days of the same glacier surface type are considered for calibrating model coefficients, so at each site, only such days are evaluated for meteorological similarity in step 1 of our algorithm. This means that n is dynamic for this model, depending on the number of days of comparable surface type in the other years (identified from the albedo record: Figure 4). Because snow cover is rare at two of our sites (VH 500 and Storglaciären), this sometimes results in n falling below the 100-day threshold outlined above, so the choice of k may be inappropriate for these days. However, this effect is anticipated to have a minimal effect on simulations as the majority of the series at these locations (94% and 89%, respectively) is modelled with coefficients estimated for days which satisfy the threshold for prescribing k (i.e. those days not designated as snow).

The cross-validation procedure is also run to estimate the skill of the models when coefficients do not reflect weather type variations. This means that, for every day, coefficients are simply calibrated using all data in the remaining years, irrespective of meteorological similarity. This results in coefficient estimates which only vary between years. For each of the models we therefore have two melt series generated via the cross-validation procedure: one simulated with coefficients that vary daily with the prevailing synoptic weather types (hereafter the ‘WT’ series), and the other simulated with coefficients that only vary inter-annually (hereafter the ‘S’ series). Evaluating both series’ correspondence with the reference melt record (Eq. 4), and comparing performance, provides insight into the value-added by the weather-type calibration routine.

The significance of any improvement in skill is assessed using a bootstrap simulation, implemented by selecting observations from both series on m randomly chosen days, and evaluating their correspondence with reference series on these days. The bootstrap is run with 10^4 samples, and m is set to the number of days in one year’s melt record at our study glaciers (92 and 62 days at Vestari Hagafellsjökull and Storglaciären, respectively). For each of the models, counting the number of times the WT series exhibits greater correspondence with the reference melt record than the S series (according to Eq. 4) and dividing this count by 10^4, provides an estimate of the probability of not obtaining an increase in seasonal melt simulation using our approach (Wilmott, 1985). We evaluate all models in terms of their ability to simulate both hourly and daily melt totals.

The cross-validation procedure also generates an N-member ensemble of coefficient estimates for each model at each location. Examining these series in relation to the prevailing
glacier meteorology provides a diagnostic of processes behind the model coefficients’ variability. This is pursued by correlating the daily coefficient values for each of the five models with daily mean meteorological variables and components of the SEB determined at the AWSs. Correlating model coefficients between locations on Vestari Hagafellsjökull also permits insight into the spatial coherence of their variability in response to synoptic weather types.

3 Results

3.1 Model Performance

The results of applying the five models are illustrated in Figures 5 and 6, while performance measures for each site are shown in Table 6. The best performances are registered by the ETI models forced with observed global radiation, and Model C generally scores higher R^2 values than Model B. Model A performs relatively poorly at hourly resolution, but performs better relative to ETI models when evaluated at daily resolution. Model B suffers the greatest reduction in skill, and the range in performance between locations is also larger for all models when examined at daily time scales. Irrespective of whether hourly or daily melt rates are examined, the performance of the models is on average best at Storglaciären, and worst at VH 500.

Across all models, the WT series exhibit greater correspondence with reference melt series, registering median improvements (with respect to the S series) of 7.3% and 23.6% in the simulation of hourly, and daily melt rates, respectively. There is no clear pattern with regards which model registers the most improvement when calibrated with respect to weather types, but there is a general tendency for the magnitude of improvement to be inversely related to performance of the unmodified temperature-index model (Figure 7). An example of the output from the bootstrap procedure is shown in Figure 8 and the full results are recorded in Table 5. The probability of not obtaining an enhancement in a seasonal melt simulation using the weather-type approach to calibrate model coefficients is low for all models ($p<0.05$) for all locations.

3.2 Model Coefficients

Mean coefficient values obtained for each model during cross-validation, and their respective coefficients of variation ($\sigma/\mu \times 100$), are shown in Table 7. Estimates of $MF_{snow/ice}$ (Model
A) range between 0.285 mm w.e. °C⁻¹ h⁻¹ and 0.685 mm w.e. °C⁻¹ h⁻¹ for the WT and S series, with universally higher values observed for ice surfaces. These estimates are within the bounds reported in the literature (e.g. Hock, 2003). For the ETI models, TMF values between 0.107 mm w.e. °C⁻¹ h⁻¹ and 0.231 mm w.e. °C⁻¹ h⁻¹ are observed, and values of RMF and RTMF fall between 0.0010 (RTMF: mm w.e. W⁻¹ m² °C⁻¹ h⁻¹) and 0.0105 (RMF: mm w.e. W⁻¹ m² h⁻¹). These values are also in general agreement with those reported in the literature (Hock, 1999; Carturan et al., 2012; Irvine-Fynn et al., 2014).

Between weather types, TMF is the most variable coefficient whilst RMF in Model C is the least variable, particularly when this model is forced by observed global radiation. For both ETI models radiation coefficients are more stable when the observed flux is used in the cross-validation procedure. Figure 9 highlights the variability of model coefficients around the globally-optimum coefficient values observed during the cross-validation procedure for the ETI models (see Figure 9 caption). Model B generally exhibits greater departure from these optimum values highlighting the need for a larger adjustment of ETI model values to account for the prevailing weather in Model B, than in Model C. Figure 9 also demonstrates the interdependency of temperature and radiation parameters in the ETI models that is evident for the entire dataset (shown by the slope in the contour field), but that is particularly apparent between weather types (shown by the linear relation evident in the scatter plot). Only when Model C is driven by observed global radiation, do the temperature and radiation coefficients appear to vary independently between weather types, which results from the stability of the RMF term. Models driven by potential global radiation show most pronounced interdependence of model coefficients between weather types.

The cause of variability in model coefficients between weather types was explored by correlating values obtained for each model in the cross-validation procedure with daily mean values of the prevailing meteorology/SEB components for the locations of the AWSs (Figure 10). TMF values exhibit consistency in their correlations between models and locations, being positively correlated with the turbulent and longwave heat fluxes, and negatively correlated with the shortwave heat flux. Consistent with these associations, Figure 10 indicates TMF coefficients exhibit the strongest positive correlations with cloud cover and vapour pressure, and weaker positive correlations with air temperature and wind speed.
RMF and RTMF exhibit similar correlations with the prevailing meteorology and SEB between locations, which are somewhat opposite in sign to the those observed for TMFs. Both RMF and RTMF correlate positively with the shortwave heat flux and negatively with the longwave heat flux and cloud cover. These correlations are typically stronger for the models forced with potential global radiation, particularly for RMF. Correlations for MF_{snow/ice} show a high degree of similarity to those recorded for the radiation melt factors, especially those observed for RTMF. MF_{snow} at VH 500 is an exception, exhibiting correlations very similar to those obtained for the TMFs at this location.

The difference in correlations with the SEB and prevailing meteorology observed for MF_{snow} between elevations on Vestari Hagafellsjökull results in little temporal correspondence between these coefficient estimates (Figure 11). For all the other coefficients, their daily values are positively correlated between elevations. The strongest agreement is for the TMF coefficients. For both RMF and RTMF, those models forced by potential global radiation are more strongly correlated between locations.

4. Discussion

4.1 Model Performance and Coefficient Variability

At all locations, and for all models, our weather-type approach to calibrating parameters significantly improved melt simulations with greatest enhancements apparent for daily melt totals. This is explained by the fact model coefficients in the algorithm described in Section 2.4 vary on a daily timescale depending on synoptic weather type. Thus, sub-daily variability in coefficients cannot be accounted for. The observation that weather-type conditioning resulted in larger improvements for models more limited in initial skill, demonstrates greater benefit of applying our modelling approach where temperature-index methods are more limited in their ability to capture processes of surface energy exchange.

Correlations between parameters from the WT series and the prevailing meteorology provide insight to the value added by weather-type conditioning. TMF coefficients in all models were found to be correlated most strongly with latent and longwave heat fluxes. This can be understood through consideration of the SEB, as these energy components are related to air temperature in a non-linear way, through the Clausius-Clapeyron and Stefan Boltzmann equations, respectively. The former relation also explains the positive correlations observed
between TMF and vapour pressure at all locations. The strong positive association with cloud
cover is in agreement with Carenzo et al. (2009). This can be understood through a priori
SEB considerations, as the sensitivity of the longwave heat flux to air temperature would be
expected to rise as the apparent emissivity of the atmosphere increases (cf. Sedlar and Hock,
2009).

Consistent with Carenzo et al. (2009) both RMF and RTMF exhibit strongest positive
correlations with the net shortwave heat flux. Additionally, these coefficients are generally
correlated more strongly with the prevailing meteorology/SEB when models are forced with
potential global radiation. This is most notable for correlations with cloud cover and the
longwave heat flux (themselves strongly co-linear at each location: minimum $r = 0.82$ at
Storglacären). These stronger correlations reflect the fact that no provision is made for
temporal variability in atmospheric transmissivity for the models forced with potential global
radiation, so this information must be included implicitly in the value of the scalars RMF and
RTMF. This mechanism also provides an explanation for the reduced variability of the
radiation factors in models forced with observed global radiation.

Compared with RMF, RTMF is more variable between weather types irrespective of whether
observed or global radiation was used to drive the models. Therefore, Model B was more
sensitive to changes in prevailing meteorology consistent with previous interpretations of ETI
model errors that have applied this algorithm (Konya et al., 2004; Carturan et al., 2012;
Irvine-Fynn et al. 2014). This is possibly an artefact of the physically-unrealistic scaling of
the net shortwave heat flux by air temperature (Pellicciotti et al., 2005; Irvine-Fynn et al.
2014). This coupled with the lower model skill generally exhibited by Model B relative to
Model C, even when variable weather types were provisioned for, makes the additive
structure of the Pellicciotti et al. (2005) algorithm the most attractive of the methods
investigated for melt simulation at these glaciers.

Whilst Model A could not be expected to match the performance of the ETI models, there is
additional interest in the meteorological controls on the MF given its widespread use for
glacier melt modelling under climate change, (e.g. Raper and Braithwaite, 2006; Radic and
Hock, 2011). MF_{ice} exhibited meteorological dependencies similar to those observed for the
radiation melt factors of models B and C, with positive and negative correlations apparent for
the shortwave and temperature-dependent heat fluxes, respectively. This is consistent with
the net shortwave heat flux being the dominant source of melt energy at all locations (Table
5), agreeing with the controls outlined by Hock (2003), and suggesting a relationship similar to that proposed by Irvine-Fynn et al. (2014). MF_{snow} did not display the same level of agreement with the radiation melt factors in regards to its dependency on the prevailing weather, likely due to reduced importance of net shortwave heat in the SEB as snow cover lowers surface albedo considerably (Figure 4).

The value-added to model skill by dynamic model coefficients conditioned on weather types can be attributed to reduction in high-frequency error. Changes in the sensitivity of the temperature-dependent heat fluxes to air temperature, for example, which reflects the effects of variable temperatures, humidities, thermal emissivities and wind speeds can be provisioned for by varying TMF. Similarly, the variable sensitivity of the SEB to the net shortwave flux, which varies principally with the magnitude of the incident flux, can also be adjusted. So too can the value of the MF, which exhibits dependencies similar to the radiation coefficients in the ETI models. Conditioning by weather types accounts for variations in these parameters by invoking the analogue principle (Kuhn, 1993), which simply assumes that similarity in synoptic weather between days translates to similar on-glacier meteorology and, consequently, similar model coefficients. The processes driving parameter variability do not need to be addressed explicitly.

This approach to dynamic parameter allocation may also provide a more conceptually-robust means of integrating climate variability into melt simulations. In order to limit errors from static model coefficients to acceptable levels average weather must stay constant in time; a condition that is unlikely to be satisfied thus rendering calibrated coefficients unsuitable for determining melt rates under changed climate conditions. Studies of atmospheric circulation in the mid- and high-latitudes during the last century have demonstrated considerable non-stationarity in the frequency of air masses/weather types (Bárdossy and Caspary, 1990; Kalkstein et al., 1990; Wilby 1997). In addition, large changes in atmospheric circulation have been noted recently for the glacierized margin of the North Atlantic (Fettweis et al., 2011, 2013 Hanna et al., 2012). Whatever their cause, failure to accommodate changes in the mean weather resulting from variable atmospheric circulation undermines the assumption of static model coefficients. Use of transient model parameters as demonstrated here offers an improved approach to accommodate variability in the frequency of weather types in model calibration explicitly.
It must also be recognized that weather types are prone to differential rates of warming under a changing climate (e.g. Kalkstein et al., 1990). In the northern hemisphere, for example, high-latitude air masses are likely to warm most rapidly due to Arctic amplification (Holland and Bitz, 2003; Serreze et al., 2009). If static temperature-sensitivities are assumed, large errors in simulated melt will manifest if rapid warming occurs in those weather types with sensitivities furthest from the average calibrated coefficients which quantify this association. This potential source of error can be traced by analysing the time-varying parameters associated with individual weather types.

4.2. Study Limitations and Transferability of the Modelling Approach

In interpreting the improvement offered by our weather-type approach to parameter calibration, it is important to consider that our reference melt series are generated by SEB models and these are prone to uncertainty, particularly with regards to estimation of the turbulent heat fluxes (Hock, 2005). Our bootstrapped test of the enhancement provided by the weather-type melt models makes no provision for the fact that their performance is not assessed relative to a ‘true’ melt rate, and thus the significance of our improvement should be interpreted with caution. This is especially true at Storglaciären, where most of the reference melt series was generated using parameterised TRS data. However, we note that the skill in simulating melt exhibited by the weather-type-dependent models is similar when evaluated relative to the reference melt series in 2011 (where almost all data are taken from glacier AWS observations), as it is in other years (when mainly TRS data are used: Table 8). Thus, whilst the extent of the uncertainty introduced by the parameterised series remains somewhat un-quantified, this assessment at least provides confidence that the improvement in simulation performance achieved at this location does not depend on the use of these off-glacier data.

A simplification applied in the modelling procedure was to use measured values of albedo to prescribe surface types (Model A) and to obtain the net global radiation (models B and C). It is considered unlikely that this results in bias in the model comparison, as this information would seem equally important for both the weather-type and static models. This issue does however raise an interesting point regarding the transferability of our approach. The SEB is a function of the interaction between the boundary-layer meteorology and the glacier surface. Changing glacier surface conditions (i.e. albedo, surface roughness) introduces variability in melt rate independent of the prevailing weather which cannot be captured using the weather-
type approach. Hence, on glaciers where temporal variability of surface properties is pronounced, more limited benefit might be realised by calibrating parameters with respect to weather types.

While our approach offers improved simulations at the point scale, distributing dynamic coefficients across the glacier adds further uncertainty to the modelling procedure. However, considering that variation of the transient model parameters was strongly coherent between elevations on Vestari Hagafellsjökull, the evidence suggests that our approach may be extended to glacier-wide simulations if judicious placement of AWSs is accompanied by interpolation of model parameters over the glacier.

The temporal transferability of our modelling approach also demands consideration. Changes in the internal structure of weather types would limit the advantage of our calibration method. If climate change manifests as weather types without precedent during calibration, then this strategy will be compromised. By the same reasoning, it is also likely that our weather-type approach to calibration will be most useful for glaciers where long records of observation are available and the information content of calibration data is maximised (Van den Dool, 1994). Variations in the SEB that may occur with time and which are independent of the prevailing weather (e.g. changes in glacier hypsometry: Braithwaite, 2008) can of course not be accounted for with our calibration strategy.

5. Conclusions

This study evaluated the utility of varying temperature-index model parameters to reflect changes in prevailing weather during melt simulations. Our results indicate that using spatially-coarse reanalysis data to define periods of meteorological similarity for calibrating models significantly enhances the skill of three algorithms commonly-used to simulate site-specific, glacier melt estimates.

The approach also provides insight to the meteorological and energetic controls of model water coefficients. Changes in parameter values between weather types were consistent with expectations from physical considerations of the surface energy balance. Future work should explore climatological controls on temperature-index model parameters with a view to determining the transferability of our approach to other glaciers or to spatially-distributed modelling approaches across large and/or data sparse catchments.
References

Table Captions

Table 1. Details of the sensors deployed at the glacier automatic weather stations, whose locations are indicated in Figure 1.

Table 2. Details of the data series used to force the SEB model on Storglaciären for different time periods. The ‘adjusted TRS’ meteorological series relates to those variables that are observed at the Tarfala Research Station, and adjusted to the location of the glacier AWS using empirical functions. See the text in Section 2.1 for further information.

Table 3. Agreement between the parameterized meteorological variables for the location of the glacier AWS on Storglaciären (determined through empirical adjustment of observations made at TRS), and the meteorology measured on the glacier. Agreement is presented in terms of the Nash-Sutcliffe Efficiency Coefficient (Eq. 4). R^2 is calculated for hourly and daily means (left- and right-hand columns, respectively), for the period when glacier observations are available (Table 2).

Table 4. Details of the SEB computations used to determine the reference melt series at each location. Further information regarding the choice of model structure and parameter values can be found in Matthews (2013) and in Section 2.1.

Table 5. Mean meteorology and SEB components for the locations of the AWSs (± standard deviation). Note that for Storglaciären, these results reflect meteorological data recorded in situ, and TRS data adjusted to the glacier location (see Table 2 for the associated time periods). ¹Cloud cover is defined as the mean ratio of received to potential, clear-sky global radiation. ²Thermal emissivity is defined as the mean ratio of received incident longwave radiation to that emitted by a blackbody radiator at the two-metre air temperature.

Table 6. Performance measures for the temperature-index models. The S series (modelled with coefficients which are static) and the WT series (modelled with coefficients which are conditioned on synoptic weather types) are compared to the reference melt rates (generated with the SEB models) at hourly and daily resolution (left- and right-hand-side columns, respectively). ΔR^2 gives the difference in Nash-Sutcliffe Efficiency Coefficient (as indicated in brackets), and $R^2(S)$ gives this improvement as a % of the R^2 for the S series. p gives the empirically-determined probability of not obtaining an improvement in annual melt simulation using the weather-type calibration routine.

Table 7. Mean coefficient values (μ) and their coefficients of variation ($c_v = \sigma/\mu \times 100$) for the temperature-index models used to simulate the S and WT series. The units for the coefficients are as follows: $MF_{snow/ice} = \text{mm w.e.} \cdot {}^\circ\text{C}^{-1} \cdot \text{h}^{-1}$; $TMF = \text{mm w.e.} \cdot {}^\circ\text{C}^{-1} \cdot \text{h}^{-1}$; $RTMF = \text{mm w.e.} \cdot \text{W}^{-1} \cdot \text{m}^{2} \cdot {}^\circ\text{C}^{-1} \cdot \text{h}^{-1}$; and $RMF = \text{mm w.e.} \cdot \text{W}^{-1} \cdot \text{m}^{2} \cdot \text{h}^{-1}$.

Table 8. The relative skill of the temperature-index models with static and weather-type-dependent coefficients, but for Storglaciären only. Refer to Table 6 and the text in Section 5.2 for further information.
Figure Captions.

Figure 1. Location of study sites. Vestari Hagafellsjökull is an outlet of the Langjökull Ice Cap: the outline of the entire ice cap is shown on the left-hand-side of the figure. Note that both the glacier AWS on Storglaciären (GAWS) and the AWS at the Tarfala Research Station (TRS) are shown on the right-hand-side of the figure. Only the scale varies between the left and right sides of the figure (shown by the separate scale bars); both maps share the same legend.

Figure 2. Comparisons of cumulative ablation simulated by the SEB models and estimated from proxy measurements of surface lowering converted to water equivalent (see Section 2.1). Cumulative uncertainty in simulated ablation (given by the blue patch) is estimated from the sensor uncertainties following the method outlined in Greuell and Smeets (2001). Note that periods when accumulation was observed are removed from the comparison at Vestari Hagafellsjökull, which accounts for the uneven length of annual series at VH 1100.

Figure 3. Comparisons of melt simulated by the SEB model at Storglaciären when forced with meteorological variables recorded on-glacier, and when forced with the adjusted TRS meteorological series (GAWS and TRS melt, respectively). R^2 is defined in Eq. 4.

Figure 4. Daily albedo observed at the glacier AWSs. Red indicates ice at VH 500 and Storglaciären, and firn at VH 1100; blue illustrates periods of snow cover for all locations. These surface types were identified using albedo thresholds of 0.38, 0.15, and 0.5 at Storglaciären, VH 500, and VH 1100, respectively. The thresholds were prescribed after manual examination of the albedo record at each location (see Matthews (2013) for further information). The vertical grey lines separate successive periods of observation (June-August on Vestari Hagafellsjökull, and July-August on Storglaciären). The stability of albedo at Storglaciären prior to 2010 reflects the fact that albedo was not measured on the glacier prior to this year, so it was instead prescribed (Section 2.1).

Figure 5. Comparisons between reference melt series, and the melt simulated by the temperature-index models at hourly resolution. The locations are separated by columns, and model variants are differentiated by row. Note that rows are labelled such that the first letter corresponds to the model name, and the subscript indicates whether static (S) or weather-type-dependent (WT) model coefficients were applied in the model being evaluated. The bracketed term in the y-axis labels denotes whether the ETI models were forced with observed, or potential, clear-sky global radiation (see Section 2.3). The relative density of points in the plots is indicated by shading (red = high density; blue = low density).

Figure 6. Comparisons between reference melt series, and the melt simulated by the temperature-index models at daily resolution. See the caption of Figure 5 for further information.

Figure 7. The R^2 achieved by the unmodified temperature-index models in the cross-validation procedure (i.e. those models with static model coefficients) versus the improvement in R^2 (R^2 for the WT series minus R^2 for the
S series) attained when coefficients are calibrated with respect to weather types. The ellipse bounds the results
from Model A when evaluated at hourly resolution: r_1 and r_2 give the Pearson product-moment correlations
between the series when these points are included, and omitted from the correlation analysis, respectively: both
r-values are significant at $p<0.05$.

Figure 8. An example of the results from the bootstrap simulation described in Section 2.4, which assesses the
significance of the improvement in temperature-index model performance when coefficients are varied as a
function of weather type. Displayed are the results of evaluating Model A at daily resolution. The circles and
bars above the probability density functions denote the means and standard deviations, respectively.

Figure 9. The response surface for the ETI model coefficients is given by the contour field. This was generated
by simultaneously varying coefficients over a wide range and calculating R^2 for each resulting combination -
performed using all available data to train the models and evaluate their performance (i.e. off-line from the
cross-validation procedure). The black and magenta scatter plots indicate the calibrated coefficient values
obtained from the cross-validation procedure for the models with weather-type-dependent and static model
coefficients, respectively. Note that the y-axis represents either the $RTMF$ or RMF coefficient, depending on the
model (models C and B, respectively)

Figure 10. Pearson product-moment correlation coefficients (r) between the value of the temperature-index
model coefficients calibrated for each of the weather types during the cross-validation procedure, and the mean
daily meteorological/energy balance conditions at the location of the glacier AWSs for the day that the
coefficients were calibrated for. Note that the dotted lines indicate the respective critical values of r to reject the
null hypothesis that $r = 0$ according to the t-test. The different colours of these lines correspond to the different
sample sizes for snow and ice surfaces relevant for Model A, which are colour-coded to match the relevant
legend entries for this model. Critical r values irrespective of surface type (and hence a for larger sample size)
are plotted, but are obscured by the lower magnitude critical values plotted for the snow/ice surfaces.

Figure 11. Correlations for model coefficients calibrated at different elevations on Vestari Hagafellsjökull
between weather types. All correlations are significant at $p<0.05$ according to a two-tailed t-test, except the
correlation observed for MF_{snow}, which has a p-value of 0.08.
<table>
<thead>
<tr>
<th>Measurement (height)</th>
<th>Sensor</th>
<th>Accuracy (±)</th>
<th>Period that data used relates to (Julian day, year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestari Hagafellsjökull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature (2 m)</td>
<td>Vaisala HMP35</td>
<td>0.2°C</td>
<td>VH 500: 152-243, 2001-2007</td>
</tr>
<tr>
<td>Relative humidity (2 m)</td>
<td>Vaisala HMP35</td>
<td>2%</td>
<td>VH 100: 152-243; 2001-2009</td>
</tr>
<tr>
<td>Wind speed (2 m)</td>
<td>R.M. Young 05103</td>
<td>0.3 m s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Shortwave radiation (2 m)</td>
<td>Kipp and Zonen CNR1-CM3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Longwave radiation (2 m)</td>
<td>Kipp and Zonen CNR1-CG3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Ablation (variable)</td>
<td>Cambell Scientific SR50</td>
<td>Max(0.01m, 0.4%)</td>
<td>VH 500: 152-243, 2001-2005; 191-243, 2006; 152-243, 2007</td>
</tr>
<tr>
<td>Storglaciären</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature (2 m)</td>
<td>Vaisala HMP45C</td>
<td>0.3°C at 0°C</td>
<td>192-243, 2010; 191-243, 2011</td>
</tr>
<tr>
<td>Relative humidity (2 m)</td>
<td>Vaisala HMP45C</td>
<td>2% (0-90%); 3% (90-100%)</td>
<td>192-243, 2010; 191-243, 2011</td>
</tr>
<tr>
<td>Wind speed/direction (2 m)</td>
<td>Young 05103</td>
<td>0.3 m s⁻¹</td>
<td>192-243, 2010; 191-243, 2011</td>
</tr>
<tr>
<td>Shortwave radiation (1.5 m)</td>
<td>Kipp and Zonen CM7B</td>
<td>8%</td>
<td>192-243, 2010</td>
</tr>
<tr>
<td></td>
<td>Kipp and Zonen CNR1, CM3</td>
<td>3%</td>
<td>191-243, 2011</td>
</tr>
<tr>
<td>Longwave radiation (1.5 m)</td>
<td>Kipp and Zonen CNR1, CG3</td>
<td>3%</td>
<td>191-243, 2011</td>
</tr>
<tr>
<td>Ablation (variable/NA)</td>
<td>Campbell Scientific SR50</td>
<td>Max(0.01m, 0.4%)</td>
<td>196-243, 2011</td>
</tr>
<tr>
<td></td>
<td>Manual stake measurements</td>
<td>Estimated: 5 mm</td>
<td>192-243, 2011</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Data used for SEB simulation</th>
<th>Period (hour, Julian day, year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted TRS meteorological series (all variables)</td>
<td>01:00, 182, 2005-14:00, 192, 2010; 01:00, 182, 2011-13:00, 191, 2011</td>
</tr>
<tr>
<td>Incident longwave radiation parameterized using the expressions of Sedlar and Hock (2009); all other meteorological variables taken directly from observations at glacier AWS</td>
<td>15:00, 192, 2010-24:00, 243, 2010</td>
</tr>
<tr>
<td>Observations at glacier AWS (all variables)</td>
<td>14:00, 191, 2011-24:00, 243, 2011</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>R^2(hourly)</th>
<th>R^2(daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature</td>
<td>0.873</td>
<td>0.946</td>
</tr>
<tr>
<td>Vapour Pressure</td>
<td>0.855</td>
<td>0.938</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>0.416</td>
<td>0.670</td>
</tr>
<tr>
<td>Shortwave radiation</td>
<td>0.746</td>
<td>0.881</td>
</tr>
<tr>
<td>Longwave radiation</td>
<td>0.493</td>
<td>0.794</td>
</tr>
</tbody>
</table>
Table 4

Model for calculating the SEB (Q): $Q = Q_H + Q_L + Q_{SW} + Q_{LW}$

Time-step is one hour

<table>
<thead>
<tr>
<th>SEB component</th>
<th>Procedure for calculation</th>
<th>Associated parameters</th>
<th>Vestari Hagafellsjökull</th>
<th>Storglaciären</th>
</tr>
</thead>
</table>
| Turbulent heat flux (sensible: Q_H and latent: Q_L) | Bulk aerodynamic method | Roughness length of momentum | Ice: 10 mm
Firm: 2 mm
Snow: 0.1 mm | Ice: 2.7 mm
Snow: 0.15 mm |
| | | Roughness lengths of water vapour and temperature | Modelled according to Andreas (1987) | Modelled according to Andreas (1987) |
| | | Stability corrections for turbulent heat flux calculations | Non-linear expressions of Beljaars and Holtslag (1991)
used for stable conditions (glacier surface temperature below air temperature);
<p>| | | Glacier surface temperature | Assumed to be at the melting point (0°C). | Assumed to be at the melting point when the longwave radiation balance is measured at the glacier AWS; zero-degree assumption also assumed when parameterized TRS data used to drive the SEB models, unless negative Q is encountered: in this case, the surface temperature is lowered iteratively (-0.25°C steps) until $Q = 0$. |
| Net shortwave heat flux (Q_{SW}) | Incident flux minus reflected flux | Albedo | NA (radiation balance measured directly at AWS) | Direct observations used when available. Otherwise (when the parameterized TRS data are used to force the SEB model), albedo is prescribed as the mean ice albedo observed during the period of glacier AWS operation |
| Net longwave heat flux (Q_{LW}) | Incident flux minus the flux emitted by the glacier surface | Emitted longwave radiation | NA (radiation balance measured directly at AWS) | Direct observations used when available. Otherwise (when the parameterized TRS data are used to force the SEB model), calculated from the glacier surface temperature using the Stefan Boltzmann law and assuming unit emissivity |</p>
<table>
<thead>
<tr>
<th>Period</th>
<th>VH 1100 (±σ)</th>
<th>VH 500 (±σ)</th>
<th>Storglaciären (±σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature (°C)</td>
<td>2.0 (1.4)</td>
<td>5.3 (1.3)</td>
<td>5.1 (2.5)</td>
</tr>
<tr>
<td>Wind Speed (m s⁻¹)</td>
<td>5.4 (2.8)</td>
<td>5.3 (1.8)</td>
<td>2.9 (1.3)</td>
</tr>
<tr>
<td>Mixing Ratio (g kg⁻¹)</td>
<td>4.7 (0.5)</td>
<td>5.0 (0.6)</td>
<td>4.6 (1.7)</td>
</tr>
<tr>
<td>Incident Shortwave Radiation (W m⁻²)</td>
<td>200 (86.3)</td>
<td>163 (92.9)</td>
<td>158 (81.8)</td>
</tr>
<tr>
<td>Reflected Shortwave Radiation (W m⁻²)</td>
<td>104 (61.0)</td>
<td>12.6 (24.3)</td>
<td>62.1 (32.8)</td>
</tr>
<tr>
<td>Albedo (dimensionless)</td>
<td>0.60 (0.13)</td>
<td>0.10 (0.10)</td>
<td>0.40 (0.10)</td>
</tr>
<tr>
<td>Cloud Cover (fraction)</td>
<td>0.48 (0.18)</td>
<td>0.58 (0.21)</td>
<td>0.60 (0.19)</td>
</tr>
<tr>
<td>Incident Longwave Radiation(W m⁻²)</td>
<td>311 (30.9)</td>
<td>316 (28.0)</td>
<td>302 (24.5)</td>
</tr>
<tr>
<td>Emitted Longwave Radiation(W m⁻²)</td>
<td>311 (4.8)</td>
<td>315 (1.5)</td>
<td>314 (4.2)</td>
</tr>
<tr>
<td>Emissivity (fraction)</td>
<td>0.81 (0.09)</td>
<td>0.92 (0.08)</td>
<td>0.89 (0.07)</td>
</tr>
<tr>
<td>Sensible Heat Flux (W m⁻²)</td>
<td>20.2 (21.9)</td>
<td>70.0 (29.5)</td>
<td>38.6 (19.0)</td>
</tr>
<tr>
<td>Latent Heat Flux (W m⁻²)</td>
<td>6.6 (16.4)</td>
<td>28.1 (22.2)</td>
<td>13.3 (16.6)</td>
</tr>
<tr>
<td>RMSE (mm w.e. d⁻¹)</td>
<td>10.8</td>
<td>13.9</td>
<td>11.4</td>
</tr>
<tr>
<td>Model</td>
<td>Hourly</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>ΔR^2</td>
<td>ΔR^2 % of $R^2(S)$</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>WT</td>
<td>(WT-S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storglaciären</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.330</td>
<td>0.354</td>
<td>0.024</td>
</tr>
<tr>
<td>B (I_o)</td>
<td>0.819</td>
<td>0.871</td>
<td>0.052</td>
</tr>
<tr>
<td>B (I_p)</td>
<td>0.725</td>
<td>0.799</td>
<td>0.074</td>
</tr>
<tr>
<td>C(I_o)</td>
<td>0.893</td>
<td>0.924</td>
<td>0.031</td>
</tr>
<tr>
<td>C(I_p)</td>
<td>0.719</td>
<td>0.790</td>
<td>0.071</td>
</tr>
<tr>
<td>VH 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.072</td>
<td>0.105</td>
<td>0.034</td>
</tr>
<tr>
<td>B (I_o)</td>
<td>0.831</td>
<td>0.867</td>
<td>0.037</td>
</tr>
<tr>
<td>B (I_p)</td>
<td>0.538</td>
<td>0.693</td>
<td>0.155</td>
</tr>
<tr>
<td>C(I_o)</td>
<td>0.916</td>
<td>0.944</td>
<td>0.029</td>
</tr>
<tr>
<td>C(I_p)</td>
<td>0.651</td>
<td>0.773</td>
<td>0.122</td>
</tr>
<tr>
<td>VH 1100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.222</td>
<td>0.287</td>
<td>0.065</td>
</tr>
<tr>
<td>B (I_o)</td>
<td>0.662</td>
<td>0.729</td>
<td>0.067</td>
</tr>
<tr>
<td>B (I_p)</td>
<td>0.654</td>
<td>0.701</td>
<td>0.047</td>
</tr>
<tr>
<td>C(I_o)</td>
<td>0.860</td>
<td>0.902</td>
<td>0.043</td>
</tr>
<tr>
<td>C(I_p)</td>
<td>0.807</td>
<td>0.845</td>
<td>0.038</td>
</tr>
<tr>
<td>Median</td>
<td>0.719</td>
<td>0.790</td>
<td>0.047</td>
</tr>
</tbody>
</table>
Table 7

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Storglaciären</th>
<th>VH 500</th>
<th>VH 1100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ</td>
<td>cv</td>
<td>μ</td>
</tr>
<tr>
<td>S Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF$_{snow}$(A)</td>
<td>0.285</td>
<td>1.2</td>
<td>0.450</td>
</tr>
<tr>
<td>MF$_{Ice}$(A)</td>
<td>0.290</td>
<td>3.6</td>
<td>0.523</td>
</tr>
<tr>
<td>TMF(B$_0$)</td>
<td>0.135</td>
<td>2.7</td>
<td>0.214</td>
</tr>
<tr>
<td>TMF(B$_p$)</td>
<td>0.124</td>
<td>3.3</td>
<td>0.231</td>
</tr>
<tr>
<td>TMF(C$_0$)</td>
<td>0.132</td>
<td>2.8</td>
<td>0.228</td>
</tr>
<tr>
<td>TMF(C$_p$)</td>
<td>0.143</td>
<td>2.0</td>
<td>0.225</td>
</tr>
<tr>
<td>RTMF(B$_0$)</td>
<td>0.0012</td>
<td>0.8</td>
<td>0.0019</td>
</tr>
<tr>
<td>RTMF(B$_p$)</td>
<td>0.0010</td>
<td>2.7</td>
<td>0.0012</td>
</tr>
<tr>
<td>RMF(C$_0$)</td>
<td>0.0087</td>
<td>0.8</td>
<td>0.0101</td>
</tr>
<tr>
<td>RMF(C$_p$)</td>
<td>0.0065</td>
<td>2.3</td>
<td>0.0071</td>
</tr>
<tr>
<td>WT Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF$_{snow}$(A)</td>
<td>0.317</td>
<td>23.8</td>
<td>0.448</td>
</tr>
<tr>
<td>MF$_{Ice}$(A)</td>
<td>0.300</td>
<td>19.0</td>
<td>0.530</td>
</tr>
<tr>
<td>TMF(B$_0$)</td>
<td>0.115</td>
<td>32.6</td>
<td>0.183</td>
</tr>
<tr>
<td>TMF(B$_p$)</td>
<td>0.113</td>
<td>32.5</td>
<td>0.209</td>
</tr>
<tr>
<td>TMF(C$_0$)</td>
<td>0.107</td>
<td>36.8</td>
<td>0.193</td>
</tr>
<tr>
<td>TMF(C$_p$)</td>
<td>0.133</td>
<td>23.1</td>
<td>0.208</td>
</tr>
<tr>
<td>RTMF(B$_0$)</td>
<td>0.0014</td>
<td>25.5</td>
<td>0.0020</td>
</tr>
<tr>
<td>RTMF(B$_p$)</td>
<td>0.0012</td>
<td>41.3</td>
<td>0.0013</td>
</tr>
<tr>
<td>RMF(C$_0$)</td>
<td>0.0092</td>
<td>6.9</td>
<td>0.0105</td>
</tr>
<tr>
<td>RMF(C$_p$)</td>
<td>0.0065</td>
<td>34.4</td>
<td>0.0073</td>
</tr>
<tr>
<td>Model</td>
<td>2005-2010</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>R^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hourly</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>S</td>
<td>$\Delta R^2 (WT-S)$</td>
</tr>
<tr>
<td>A</td>
<td>0.333</td>
<td>0.356</td>
<td>0.023</td>
</tr>
<tr>
<td>B (I_o)</td>
<td>0.815</td>
<td>0.870</td>
<td>0.055</td>
</tr>
<tr>
<td>B (I_p)</td>
<td>0.726</td>
<td>0.798</td>
<td>0.073</td>
</tr>
<tr>
<td>C(I_o)</td>
<td>0.891</td>
<td>0.921</td>
<td>0.031</td>
</tr>
<tr>
<td>C(I_p)</td>
<td>0.722</td>
<td>0.789</td>
<td>0.067</td>
</tr>
<tr>
<td>Mean</td>
<td>0.697</td>
<td>0.747</td>
<td>0.050</td>
</tr>
<tr>
<td>A</td>
<td>0.522</td>
<td>0.624</td>
<td>0.102</td>
</tr>
<tr>
<td>B (I_o)</td>
<td>0.519</td>
<td>0.739</td>
<td>0.220</td>
</tr>
<tr>
<td>B (I_p)</td>
<td>0.670</td>
<td>0.766</td>
<td>0.096</td>
</tr>
<tr>
<td>C(I_o)</td>
<td>0.700</td>
<td>0.842</td>
<td>0.143</td>
</tr>
<tr>
<td>C(I_p)</td>
<td>0.707</td>
<td>0.782</td>
<td>0.076</td>
</tr>
<tr>
<td>Mean</td>
<td>0.623</td>
<td>0.751</td>
<td>0.127</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

\[r_1 = -0.645 \]
\[r_2 = -0.913 \]
Figure 8
Figure 9
Figure 10
Figure 11