On glucose diffusivity of tissue engineering membranes and scaffolds

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: SUHAIMI, H. ... et al, 2015. On glucose diffusivity of tissue engineering membranes and scaffolds. Chemical Engineering Science, 126, pp. 244-256.

Additional Information:

- NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Engineering Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be subsequently published in Chemical Engineering Science DOI: 10.1016/j.ces.2014.12.029

Metadata Record: https://dspace.lboro.ac.uk/2134/16533

Version: Accepted for publication

Publisher: © Elsevier

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
On glucose diffusivity of tissue engineering membranes and scaffolds

Hazwani Suhaimi, Shuai Wang, Tom Thornton, Diganta Bhusan Das*

Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU, UK
(*Corresponding author; Email: D.B.Das@lboro.ac.uk; Tel: 00441509222509; Fax: 00441509223923)

Abstract

There has been an increasing interest in the concept of growing artificial tissues in bioreactors which use numerous membranes and scaffolds to support the cellular processes such as cell growth and nutrient uptake. While these approaches are promising and may be considered to be successful in some circumstances, there is a general lack of quantitative information on the glucose (nutrient) diffusivity of these materials. In addressing this issue we have carried out a series of well-defined laboratory experiments to measure the glucose diffusion coefficient across a number of tissue engineering membranes and scaffolds saturated with water and cell culture medium (CCM). For this purpose, a diffusion cell was constructed and five different membranes and scaffolds with varying pore size and shapes were employed, which include cellulose nitrate membrane, polyvinylidene fluoride membrane, poly(L-lactide) scaffold, poly(caprolactone) scaffold and collagen scaffold. Pore size distribution, porosity and tortuosity of these materials were then determined and correlated to the glucose diffusivity values. As expected, we found that the diffusion coefficient increases with increasing pore size of the materials. These relationships are non-linear and may be non-monotonic in nature as they depend on a number of factors such as the basic building blocks of the materials which are non-periodic and heterogeneous in nature and vary within the same material, or from one material to another. We observed that glucose diffusivities in the materials saturated with CCM are significantly reduced at a given temperature which is contrary to what have been generally assumed in the previous studies on glucose transport processes. Therefore, a conclusion can be drawn that the presence of extra components and difference in fluid properties of CCM compared to water have a significant effect on the glucose diffusion coefficient in the tissue engineering membranes and scaffolds.

Keywords: Membrane; Scaffold; Glucose; Diffusion coefficient; Tortuosity

1. Introduction

The concept of growing cells outside the human body and their survival has been proven to work dated back almost a century ago when Wilhelm Roux, a German zoologist, had successfully cultured chick neural crest in warm saline water for over a period of few days (Hamburger, 1997). This is
supported by Alexis Carrel, a Nobel Prize winner in 1912, whose work showed that not only it is possible to grow tissues including connective and heart tissues in vitro but also maintain their characteristics for over a long period of time (Carrel, 1912). Tissue engineering has emerged now to be a valuable tool as a solution to overcome health problems such as tissue damage, degeneration and failure.

Engineered bone (Kimelman-Bleich et al., 2011; Grayson et al., 2010), cartilage (Schulz et al., 2008), tendon (Abousleiman et al., 2009; Omae et al., 2012) and blood vessel tissues (L’Heureux et al., 2007) have been successfully cultured both in vitro and in vivo (Kimelman-Bleich et al., 2011; Omae et al., 2012; L’Heureux et al., 2007). But studies have shown that culturing functional tissues in vitro is more complex than in vivo due to the need for a controlled environment during cell cultivation (Li et al., 2013). Hence, a bioreactor system is essential. To date, there have been several types of bioreactors designed to culture and grow 3D tissues, such as spinner flasks (Page et al., 2013), rotating vessels (Nishi et al., 2013; Chao and Das, 2015), perfusion systems (Baptista et al., 2013), magnetic force bioreactors (Bock et al., 2010), compression or strain bioreactors (Abousleiman et al., 2009; Wartella and Wayne, 2009), combined bioreactors which may couple perfusion with compression (Liu et al., 2012) such as rotating compression bioreactors (Wu et al., 2013) and, another perfusion bioreactor, namely, hollow fibre membrane bioreactors (Ye et al., 2006; Abdullah et al., 2009; Napoli et al., 2011, 2014; Chapman et al., 2012). Even though these bioreactors give hopes to tissue engineering approaches, they may not be able to prolong the cell culture environments (Li et al., 2013). One of the reasons for this is limited nutrient diffusion through scaffolding matrix and membrane. To achieve the desired rate of mass transfer and allow the development of novel membranes and scaffold, a good understanding of the quantitative relationship between their properties and nutrient transport behaviour is essential (Chao and Das, 2015). A good understanding of the mass transfer behaviour in these materials is also necessary as these materials may be used to calibrate and develop biosensors, e.g., for monitoring glucose level (Boss et al., 2012; Wang et al., 2013).

One of the important components of most tissue engineering bioreactors is the scaffold/membrane matrix which acts as a support for cells to grow into new tissues before being implanted into the host tissue. Some of the general characteristics of the support materials are that they must be porous for ease of nutrient diffusion and waste product removal (Florczyk et al., 2013; Guan et al., 2013; Deans et al., 2012), biocompatible (Stamatialis et al., 2008), the material must possess comparable mechanical properties to that of in vivo tissues (Karageorgiou and Kaplan, 2005; Karande et al., 2004), allow cell seeding, and others. Some examples of these support materials for tissue engineering purposes are summarised in Table 1.
<table>
<thead>
<tr>
<th>Material</th>
<th>Fabrication technique</th>
<th>Pore size (µm)</th>
<th>Porosity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(lactic-co-glycolic acid)(PLGA) scaffold</td>
<td>Fiber knitting</td>
<td>NA</td>
<td>NA</td>
<td>Ouyang et al. (2003); Sequeira et al. (2012)</td>
</tr>
<tr>
<td>Poly(caprolactone) (PCL) scaffold</td>
<td>Salt leaching and thermal induced phase separation</td>
<td>NA</td>
<td>93.6 ± 0.6</td>
<td>Zhang et al. (2013)</td>
</tr>
<tr>
<td>Hydroxyapatite (HA) scaffold</td>
<td>Imaging techniques and stereo lithography</td>
<td>250</td>
<td>40</td>
<td>Chu et al. (2002); Kim et al. (2007)</td>
</tr>
<tr>
<td>Poly(l-lactide)/β-tricalcium phosphate (PLLA/β-TCP) scaffold</td>
<td>Solvent self-proliferating/model compressing/particulate leaching</td>
<td>100-250</td>
<td>57</td>
<td>Xiong et al. (2002); Kang et al. (2009)</td>
</tr>
<tr>
<td>Collagen-glycosaminoglycan (GAG) scaffold</td>
<td>Lyophilisation technique</td>
<td>96</td>
<td>99.5</td>
<td>O’Brien et al. (2005); Keogh et al. (2010)</td>
</tr>
<tr>
<td>Poly(lactic-co-glycolic acid)(PLGA) membrane</td>
<td>Dry/wet- and wet-spinning</td>
<td>0.2-1.0</td>
<td>NA</td>
<td>Ellis and Chaudhuri (2006)</td>
</tr>
<tr>
<td>Poly(lactic-co-glycolic acid)(PLGA)/polyvinyl alcohol (PVA) membrane</td>
<td>Wet-spinning</td>
<td>0.54 ± 0.11</td>
<td>46</td>
<td>Meneghello et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.67 ± 0.15</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Membrane Type</td>
<td>Preparation Method</td>
<td>Membrane Properties</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Poly (lactide-co-glycolide)(P<sub>96</sub>LGA) membrane</td>
<td>Wet-spinning phase-inversion</td>
<td>0.89 ± 0.16 μm (2.5% PVA-PLGA)</td>
<td>Morgan et al. (2007)</td>
<td></td>
</tr>
<tr>
<td>Nanoporous polyethylene membrane</td>
<td>Stereolithography using a biocompatible medical-grade resin (proform)</td>
<td>1.1 ± 0.1 μm (5% PVA-PLGA)</td>
<td>Boss et al. (2012); Boss et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Polypropylene microporous membrane</td>
<td>Melt-extrusion/cold-stretch</td>
<td>0.16 ± 0.006 μm</td>
<td>Yu et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>Titania nanotubular membrane</td>
<td>NA</td>
<td>0.125</td>
<td>Paulose et al. (2008)</td>
<td></td>
</tr>
</tbody>
</table>
Tissue growth and survival are undoubtedly complex, involving an immense variety of processes from intracellular transduction pathways to tissue-level mechanics (O’Dea et al., 2013). Cell differentiation, survival and proliferation of tissue-engineered constructs are highly dependent on the availability of nutrients. Therefore, the diffusion as well as the distribution and availability of the relevant solutes, e.g., nutrients, must be fully grasped as they are important for tissue formation, growth and survival (Liu et al., 2013). Glucose and oxygen are critical molecules in these regards as shown in both experimental and modelling studies (e.g., Mauck et al., 2003a; Ye et al., 2006). In contrast to oxygen which has been extensively studied over the years (Malda et al., 2004a, 2004b; Kellner et al., 2002; Guaccio et al., 2008; Ellis et al., 2001), there is limited knowledge available on the diffusion coefficients of other nutrients or metabolites especially glucose and lactic acid in porous membrane and scaffold within cell culture media (CCM) (Liu et al., 2013). Most diffusion coefficient data are for cases where these materials are saturated with water at ambient conditions. However, the cell/tissue culture experiments are typically conducted at 37-38°C and the materials are imbibed with cell culture medium (CCM).

The diffusivities of glucose in aqueous solutions were measured some sixty years ago (Longsworth, 1952). More extensive measurements of glucose diffusion coefficients in different fluid and porous media have been studied as well, such as water (Dionne et al., 1996), poly-ether-sulphone and polysulphone (Curcio et al., 2005), polyvinyl alcohol (Phanthong and Somasundrum, 2003), calcium alginate (Chai et al., 2004), collagen gel (Shaw and Schy, 1981), agarose gel (Weng et al., 2005) and hemodialysis films and hollow fibers for blood purification processes (Klein et al., 1977). However, there is little or no published information that discuss specifically the glucose diffusivity across membranes or scaffolds that are used for cell/tissue engineering. Lactic acid is beyond the scope of this study and will not be covered here.

While a number of techniques have been studied and developed to study the diffusion of small molecules such as light scattering (Bica et al., 2001), nuclear magnetic resonance microscopy (NMR) (Kwak and Lafleur, 2003; George et al., 2004), fluorescence spectroscopy (Ye et al., 2003; McCain et al., 2004), fourier transform infrared microscopy (FTIR) (Sahlin and Peppas, 1996; Peppas and Wright, 1996), electrochemical techniques (Zhang et al., 2002; Cleary et al., 2003) and fluorescence recovery after photobleaching (FRAP) (Pluen et al., 1999), these often require sophisticated and indirect methods for the concentration measurements of the molecule diffusing across the membrane. These may not allow the diffusion process to be monitored continuously (Lu et al., 2013). Furthermore, the suitability of these techniques to study the materials investigated in the present study may not match with the materials’ properties. For instance, the light transmission from and to the solute molecules in the gel-like scaffolds to capture its speed is not possible for used in the present study due to the
membranes/scaffolds investigated are generally not transparent. We propose in this study the use of a simple diffusion cell that is easy to use and allows us to monitor the diffusion process continuously over time.

The interest in the determination of diffusion coefficients in membranes particularly in chemical and biotechnological applications can be found in many applications of membranes, e.g., water treatments, drug delivery and tissue engineering (Choi et al., 2013; Bai et al., 2012; Jeon et al., 2012; Parizek et al., 2012; Peter et al., 2010). Despite a number of literature works, it does seem that the mass transfer behaviour in terms of dependence of diffusion on membrane morphology is still not fully understood (Wang and Ma, 2012). Molecular diffusion is dependent on the membrane morphology and the fluid that saturates it may have an effect on the diffusivity values (Cussler, 2009). Diffusional boundary layers that are created at the porous material-liquid interfaces may offer different resistances to diffusion as the fluid and materials change (Chan et al., 2012). The temperature of the system also plays important roles in determining the molecular diffusion. For example, the temperature affects both the solubility and diffusion coefficient of a molecule in a fluid and the porous material (Chen et al., 2013). The temperature also impacts the interactions among the multi-components that make up the fluid (e.g., a cell culture media) which may affect the diffusion coefficient of the molecule particularly if the molecular size is big (Abdullah and Das, 2007). What we obtain for the measurements of the diffusion coefficient of a molecule is therefore a lumped effect from a number of inter-related phenomena.

It is therefore the purpose of our study to quantify the relationship between diffusion coefficient and membrane morphology by engaging typical membrane and scaffold materials for tissue engineering in diffusion experiments and relating the diffusivity values to the quantitative information of the pore morphology of the materials. We acknowledge that some papers have discussed the dependence of the diffusion coefficient on temperature, for example, that by Yui et al. (2013) which discusses the change in diffusion coefficient of some solutes in water as temperature changes. Cai et al. (2012) reported the diffusion of glucose in membranes at 20°C and 37°C in deionized water and in NaCl solution. Umecky et al. (2013) also reported the influence of temperature on the values of the diffusion coefficient of amino acids in water. However, none of these papers really relate to the specific tissue engineering membranes, fluids (i.e., cell culture media) or combination of these two as they are normally used in tissue engineering.

In this study, we have adopted a two-compartment diffusion cell technique to investigate the glucose transport properties of typical tissue engineering membranes and scaffolds within CCM and water. This includes the relationship between the morphology of membranes and scaffolds and its effect on...
glucose diffusivities. In addition, tortuosity and porosity as well as the diffusion coefficient of glucose in free media have been determined.

Please note that although the materials chosen for this study are designed for tissue engineering purposes, they are not seeded with any biological cells during our experiments. This is because this work is aimed at quantifying simple passive diffusion of glucose through the materials. As mentioned earlier, the diffusivity values are needed for a number of practical scenarios, e.g., modelling of mass transport in tissue engineering bioreactors, choosing the materials for tissue engineering bioreactors and biosensors, and any others. If indeed the membranes and scaffolds are seeded with biological cells (e.g., stem or epithelial cells; adherent or suspended cells), the mass transfer rate may be different due to their presence. The effective passive diffusion in this case may be different depending on a number of factors, e.g., density of cells in the materials, glucose uptake rate by the cells and any other factors. We consider this to be a ‘derived’ property and not discussed in this paper.

2. Materials and methods

2.1. Membranes

Two types of membranes were used in this study: cellulose nitrate (CN) and polyvinylidene fluoride (PVDF). The CN and PVDF membranes were purchased from Fisher Scientific UK Ltd (Loughborough, UK) and Millipore UK Ltd (Watford, UK), respectively. Table 2 shows the main characteristics of these membranes. Prior to conducting all experiments, the membranes were soaked in deionised water for a day in order to remove any remaining preservative on the membrane surface. We define that water fully imbibes into the membrane during this time period and, that there is no significant swelling and, hence, changes in the pore morphology of the membrane after this period. Table 3 shows the thicknesses of these membranes as measured using a surface profiling (non-contact mode) instrument (Talysurf CLI 2000, Taylor Hobson Ltd, Leicester, UK). The differences between the thicknesses at different time intervals are defined as due to the swelling of the membrane because of imbibition. The measurements were only done for water. As evident from the table, there is no significant change in the thickness of the membrane and, hence, swelling.

2.2. Scaffolds

Poly(caprolactone) (PCL), poly(L-lactide) (PLLA) and collagen scaffolds were used in this study. PCL was purchased from the Electrospinning Company Ltd (Didcot, UK) while PLLA was a kind gift from the same company. Collagen was purchased from Matricel GmbH (Herzogenrath, Germany). Table 2 shows the main characteristics of these scaffold materials. The appendix shows fibre density of the PCL and PLLA scaffolds as supplied by the manufacturer. Before their use, all scaffolds were treated as
follows. PCL was treated with 15% ethanol (Fisher Scientific UK Ltd, Loughborough, UK) for 30 min to aid in wetting the material and to remove any trapped air, before being soaked and washed with deionised water, replacing the water twice in 30 min in order to remove any trace of ethanol. The same treatment was applied to PLLA except that a 70% ethanol solution (Fisher Scientific UK Ltd, Loughborough, UK) was used. Collagen scaffold was pre-soaked in deionised water for 30 min before used in experiments. A different treatment was used in this case as the collagen scaffold is hydrophilic while both PCL and PLLA are hydrophobic in nature. Similar to the membranes, we define that there is no significant swelling and, hence, changes in the pore morphology of the scaffold after this period. Table 3 shows the thicknesses of these scaffold materials. Similar to the membranes, it is deduced that there is no significant swelling based on the results depicted in the table.

2.3. Other materials

The cell culture medium (CCM) used was Dulbecco’s Modified Eagle Medium (DMEM) (Life Technologies Ltd, Paisley, UK). The glucose was of analytical grade powder D-glucose-anhydrous (Fisher Scientific UK Ltd, Loughborough, UK) of molecular weight 180.16 g/mol.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (µm) based on Manufacturers’ information</th>
<th>Manufacturers’ pore size (µm)</th>
<th>Min pore size (µm)</th>
<th>Mean pore size (µm)</th>
<th>Max pore size (µm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>PVDF</td>
<td>125</td>
<td>0.1</td>
<td>0.08</td>
<td>0.32 ± 0.29</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>CN</td>
<td>122.5</td>
<td>0.45</td>
<td>0.21</td>
<td>0.6 ± 0.30</td>
<td>2.09</td>
</tr>
<tr>
<td>Scaffold</td>
<td>PLLA</td>
<td>50</td>
<td>12-18</td>
<td>4.04</td>
<td>13.67 ± 4.25</td>
<td>25.87</td>
</tr>
<tr>
<td></td>
<td>PCL</td>
<td>50</td>
<td>20-30</td>
<td>5.8</td>
<td>21.69 ± 6.85</td>
<td>44.84</td>
</tr>
<tr>
<td></td>
<td>Collagen</td>
<td>1500</td>
<td>80</td>
<td>12.55</td>
<td>75.15 ± 5.21</td>
<td>175.18</td>
</tr>
</tbody>
</table>
Table 3. Material thicknesses as measured a surface profiling instrument (Talysurf CLI 2000, Taylor Hobson Ltd, Leicester, UK), and their respective swelling percentage. Please note that the average thicknesses we have measured vary slightly from the values of average thickness that the manufactures provide for the same samples (Table 2).

<table>
<thead>
<tr>
<th>Material</th>
<th>Average thickness of dry sample (1) (µm)</th>
<th>Average thickness of wet sample after soaking in water for 24 hours (2), which represent the samples at the beginning of diffusion experiment (µm)</th>
<th>Average thickness of wet sample after soaking in water for 48 hours (3), which represent the samples at the end of diffusion experiments (µm)</th>
<th>Swelling between dry sample (1) and wet sample (2) (%)</th>
<th>Swelling between wet sample (2) and wet sample (3) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF membrane</td>
<td>98.38</td>
<td>98.61</td>
<td>101.23</td>
<td>0.23</td>
<td>2.66</td>
</tr>
<tr>
<td>CN membrane</td>
<td>124.22</td>
<td>125.54</td>
<td>129.79</td>
<td>1.06</td>
<td>3.39</td>
</tr>
<tr>
<td>PLLA scaffold</td>
<td>32.04</td>
<td>33.58</td>
<td>34.11</td>
<td>4.81</td>
<td>1.58</td>
</tr>
<tr>
<td>PCL scaffold</td>
<td>37.79</td>
<td>38.85</td>
<td>40.89</td>
<td>2.80</td>
<td>5.25</td>
</tr>
<tr>
<td>Collagen scaffold</td>
<td>1659.37</td>
<td>1699.9</td>
<td>1715.3</td>
<td>2.44</td>
<td>0.91</td>
</tr>
</tbody>
</table>

2.4. Determination of pore size distribution of the membrane and scaffold materials

Measurement of pore size is done manually using the software ImageJ (Wayne Rasband, National Institute of Mental Health). The analysis of the pore size distribution of the sample materials also used scanning electron microscopy (SEM) images where it enables visual images of membrane/scaffold’s morphology and can be used directly in ImageJ software. Although these images refer to the surface morphology of the membranes and scaffolds investigated, they represent the sample morphology well as the samples have a fairly homogeneous (narrow range) of pore size distribution. The SEM images were uploaded on to the software and lines were drawn for every pore after setting the scale to track the measurements. The minimum, maximum and average of pore size are shown in Table 2. On the other hand, the pore size distributions for the selected materials are shown in Figure 3.

2.5. Evaluation of the porosity (ε) and tortuosity (τ) of the membrane and scaffold materials
Besides the pore size distribution, the porosity values of the materials were determined as they effect the solute diffusion through the materials. The porosity values depend on the size and distributions of the pores in the materials. Further, they are required to find out the tortuosity of each membrane/scaffold material in this study.

Porosity is defined as the ratio of voids volume to total volume:

$$\varepsilon = 1 - \frac{V_m}{V_t}$$

(1)

Where, V_m is solid volume and V_t is total volume of sample.

Porosity can be determined either using indirect or direct approaches. Apparent densities estimation, pycnometric methods and mercury porosimetry are direct approaches while computerised analysis of scanning electron microscopy images and air-liquid displacement techniques are indirect approaches (Palacio et al., 1999). In this study, we opted for a direct approach, which is a pycnometric method. By measuring the masses and fitting the experimental data into the equation below, porosity is evaluated.

$$\varepsilon = 1 - \frac{m_1 + m_2 - m_3}{V_t \rho_w}$$

(2)

where m_1 is the mass of dry sample, m_2 is the mass of pycnometer levelled with water, m_3 is the mass of pycnometer levelled with water together with sample contained inside and ρ_w is the water density which is 0.9970 g/cm3 at room temperature.

The dry membranes and scaffolds were each weighed separately before soaking them wet in the pycnometer. Assuming the porous materials were soaked completely and effectively in water, the masses of these wet samples were measured together with the water-levelled pycnometer, giving m_3.

The experimental data were then fitted into Eq. (2) above giving porosity of the materials investigated.

Tortuosity, on the other hand, considers the increase in distance of a diffusing molecule due to pore bending and curves. Tortuous channels hinder the movement of molecules which gives resistance to mass transfer. This hindrance is included and defined by the tortuosity factor which takes into account the fluid transport system as well as the pore connectivity. A relatively straight channel gives a tortuosity value of unity while porous materials give a tortuosity value greater than unity, but typically between 2 and 3 (Martin, 1993).

Nuclear magnetic resonance (NMR) based measurements, mercury intrusion porosimetry, image analysis (Wu et al., 2006) and determination of the ratio of diffusion coefficient in free media to the diffusion coefficient in the porous network (Barrande et al., 2007) are some example methods used to evaluate the tortuosity. The latter is used in this study where the effective diffusion coefficient (D_e) is
derived from diffusivity measurements with the diffusion cell; porosity (ϵ) is derived from the aforementioned method and the diffusion coefficient in free media (D) is calculated from Stokes-Einstein equation described below. Hence, tortuosity (τ) is derived from the following relationship:

$$D_e = D \frac{\epsilon}{\tau}$$
(3)

It must be noted that different types of diffusivities are used in the above equation where D_e leads to transport diffusivity by fitting experimental measurements into Eq. (6) while D represent self-diffusivities calculated Stokes-Einstein equation (Eq. (9)).

2.6. Measurement of glucose diffusion coefficient

2.6.1. Diffusion cell for measurement of glucose diffusion coefficient

Two rectangular diffusion cells, which are similar to those described by Chenu and Roberson (1996), were made to measure the diffusion coefficient of glucose across the membranes and scaffolds in both CCM and water. Both cells consisted of two acrylic chambers with identical volumes. The chambers were called donor and receptor phase, respectively. A larger cell was used to determine the diffusion of glucose across the membranes and scaffolds in water while the smaller cell was used with CCM to help reduce the amount of CCM consumed per experiment. The diffusion cells were assembled by tightly screwing the half chambers into the rubber gaskets, with the membrane/scaffold fixed in between (Figure 1). The rubber gaskets were embodied to prevent leakage between the half chambers.

![Figure 1. Schematic drawing of a diffusion cell](image-url)
The larger cell has a volume of 207.5 ml per chamber with an internal geometry of length 100 mm x height 45 mm x width 50 mm. The smaller cell has a volume of 41 ml per chamber with an internal geometry of length 20 mm x height 45 mm x width 45 mm. Each half chamber was filled with either CCM or water. The donor phase also contained glucose solution. The glucose powder was pre-mixed in a beaker with either CCM or water prior to the start of the experiment. Both solutions of pure CCM/water (receptor phase) and glucose mixed with CCM/water (donor phase) were allowed to equilibrate at either 27 or 37°C in the heated water bath for 60 min before the apparatus was assembled. The whole apparatus was placed in a thermostated water bath at either 27 or 37 ± 1°C. The corresponding diffusion coefficients were calculated according to Fick’s first law. Fick’s first law describes the diffusion of small uncharged molecules well. It is given by (e.g., Crank, 1975)

\[J = -D \frac{\partial C}{\partial z} \]

(4)

where \(J \) is the mass flux describing the mass transfer through an area per unit time, \(D \) is the diffusion coefficient of the solute molecule; \(C \) is the concentration of the diffusing solute molecule while \(z \) is the diffusion length. Obstruction effects as a result from diffusion across membranes and scaffolds must be considered with certain porosity and partition coefficient. These properties are included in the effective diffusion coefficient of the material (Gutenwik et al., 2004) defined by

\[J = -D_e \frac{\partial C}{\partial z} \]

(5)

Assuming that there was no change in volume, Eq. (5) was transformed into Eq. (6) and that the glucose diffusion across membranes and scaffolds in CCM was calculated as given below:

\[V_d \frac{\partial c_d}{\partial t} = -D_e A \frac{c_d - c_r}{l} \]

(6)

where \(l \) was the membrane/scaffold thickness, \(A \) the membrane/scaffold area, \(D_e \) the effective diffusion coefficient of the material and \(V_d \) the donor volume. By measuring the concentration in both chambers at different times, a diffusion coefficient was calculated by fitting Eq. (6) to the experimental data.

2.6.2. Measurements of glucose diffusion coefficients of the samples saturated in water

A UV spectrophotometer (UV Mini 1240, Shimadzu, Japan) was used to monitor the change in glucose concentration over time. Each chamber (Figure 1) was filled with 207.5 ml of deionized water as this is the amount that is required to fill the chamber completely. The donor phase also contained 2 mg/ml of glucose solution. Samples of 2.5 ml were taken using a plastic syringe from both the donor and receptor phase at intervals of 1 h until equilibrium was established. The samples were placed in a glass
cuvette and analysed by the UV spectrophotometer at a wavelength of 190 nm. Immediately after being analysed, the samples were poured back into the donor and receptor phase, respectively, to keep the volume constant. All experiments were conducted in duplicate.

2.6.3. Glucose monitoring system for diffusion in the materials saturated in CCM

An issue was encountered while investigating the diffusion of glucose in CCM. The photometric elusion curve showed significant noise at around 190 nm suggesting that the presence of other molecules in CCM might interfere and obscure the concentration measurements. To resolve this issue, a glucose analyser was used instead. To resolve this issues and to measure the diffusion of glucose in CCM, an YSI glucose analyser (YSI 2300 STAT PLUS, YSI UK Ltd, Hampshire, UK) was used. The outstanding performance of YSI glucose analyser has been known for more than two decades (Lindh et al., 1982; Clarke et al., 1987; Burrin and Alberti, 1990). It has been well accepted as a device for measuring glucose concentration due to its ease of use, quick analysing time (1 min) and small sample size (25 µl). This instrument is based on enzymatic reaction. The system consists of two membrane layers, an enzyme layer and a platinum electrode. The first layer which houses porous polycarbonate minimises the glucose diffusion into the enzyme layer to avoid the reaction from becoming enzyme-limited while the third layer which contains cellulose acetate only allows small molecules such as hydrogen peroxide to pass through and finally reaches the platinum electrode where it is oxidised to produce electrons.

Immobilized enzyme reaction:

\[
\text{D-glucose} + \text{O}_2 \xrightarrow{\text{glucose oxidase}} \text{D-glucan-δ-lactone} + \text{H}_2\text{O}_2
\] (7)

Anode reaction:

\[
\text{H}_2\text{O}_2 \xrightarrow{\text{platinum anode}} 2\text{H}^+ + \text{O}_2 + 2\text{e}^-
\] (8)

Each half chamber was filled with 41 ml of CCM. The donor phase also contained 8 mg/ml of glucose solution. The diffusion of glucose was monitored by withdrawing samples using a plastic syringe from both the chambers, at intervals of 1 h for a period of 8-9 h. The samples were placed in a glass cuvette and 25 µl were aspirated by the sipper for glucose concentration determination. The volume loss for each chamber remains consistent for every sample, thus the issue of keeping the volume constant can be ignored. All diffusion experiments were conducted in duplicate.

2.7. Determination of glucose diffusion coefficient in liquid
Diffusion coefficient of glucose in liquid media is an important factor to evaluate tortuosity. In this
study, Stokes-Einstein equation is considered to evaluate this parameter for both water and CCM:

\[D = \frac{k_B T}{6\pi \eta r} \]

where \(k_B \) is Boltzmann’s constant with a value of \(1.3807 \times 10^{-23} \) J/K, \(T \) is the working temperature in K,
\(\eta \) is the liquid dynamic viscosity in kg/m/s and \(r \) is the Stokes radius of glucose with a value of \(3.65 \times 10^{-10} \) m (Bouchoux et al., 2005). The liquid dynamic viscosity is determined in-house using a U-tube viscometer (Poulten, Selfe & Lee Ltd, Essex, UK) (Kim et al., 2002), which are provided in Table 4. This gave kinematic viscosity, which were converted to dynamic viscosity. The experiments for the measurements of the fluid viscosity were performed at two operating temperatures, i.e., 27 and 37 ± 1°C for both water and CCM.

Table 4. Dynamic viscosities of liquids at different temperatures (determined in-house using a U-tube viscometer)

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Temperature (°C)</th>
<th>Average dynamic viscosity (kg/m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>27 ± 1</td>
<td>0.000865269</td>
</tr>
<tr>
<td></td>
<td>37 ± 1</td>
<td>0.000649516</td>
</tr>
<tr>
<td>CCM</td>
<td>27 ± 1</td>
<td>0.001306489</td>
</tr>
<tr>
<td></td>
<td>37 ± 1</td>
<td>0.001100855</td>
</tr>
</tbody>
</table>

3. Results and discussions

To investigate the relationship between diffusion and membrane morphology, the microstructures of all the materials were investigated using a scanning electron microscopy (SEM) as discussed in the next section. The diffusion of glucose across membranes and scaffolds saturated in water and CCM was monitored. The results show that the diffusion coefficient is higher at a larger pore size, indicating least resistance of glucose molecules diffusing through the channel. Porosity and tortuosity were also determined to develop a correlation between diffusion and membrane morphology with porosity and tortuosity.

3.1. Material characterisation

SEM was utilized to observe the morphology of membranes and scaffolds used in this study. The dry samples were placed on a sample stand and coated with carbon. The high voltage SEM (Cambridge Stereoscan 360 SEM) was used to view the surface morphology of the investigated membranes and scaffolds. Figure 2 presents typical SEM images of PVDF membrane, CN membrane, PCL scaffold, PLLA
scaffold and collagen scaffold. The photographs show the distribution of pores and channels within
the material where Figure 2a and 2b show the pore distribution of the membranes. Please note that
Figures 2a and 2b have different scale bars. Figure 2c-2e show the distribution of channels and that
collagen scaffold has relatively straight orientation and larger pores and this attributes to the
diffusivity value presented in Table 6.

Figure 2. SEM micrographs showing surface morphology of the selected sample materials: (a) PVDF
membrane, (b) Cellulose Nitrate membrane, (c) PCL scaffold, (d) PLLA scaffold and (e) Collagen
scaffold
Pore size distribution across the surface of the material was also investigated (Figure 3) using the software ImageJ. It is done manually as described in section 2.4 and the procedure is reproducible. Most results are in good agreement with the manufacturer’s size rating except for PVDF membrane. PVDF gave a higher mean pore size than the rating and can be ignored.

Figure 3. Average pore size distribution of membrane/scaffold as determined by us; x-axis scales are referred as follows: (a) Cellulose Nitrate membrane, (b) PVDF membrane, (c) PCL and PLLA scaffolds and (d) Collagen scaffold. The pore sizes have been manually obtained using ImageJ

3.2. Atomic force microscopy (AFM) observation for surface roughness

Atomic force microscopy is a characterisation method and presents high possibilities of application in both the field of microscopy observation and characterisation of various surfaces (Ochoa et al., 2001). The difference between AFM and SEM is that AFM can be used to determine 3D surface topography/roughness while SEM is used to determine pore size, both of which have been reported to affect the diffusion process. Figure 4 shows the 3D AFM images of cellulose nitrate (CN) membrane and PVDF membrane at a scan area of 10 µm using an atomic force microscope model Topometrix Explorer (Veeco Explorer AFM, Santa Barbara, USA) with a high resonant frequency (HRF) silicon probe and tapping mode as the imaging mode. The nodules are seen as bright high peaks.
The results for roughness parameters R_a and R_{rms} are presented in Table 5. R_a is the average surface roughness while R_{rms} is the root mean squared values. The average surface roughness values and the root mean squared values were estimated by the AFM software using the following expressions (Henke et al., 2002):

$$R_a = \frac{1}{N} \sum_{i=1}^{N} |z_i|$$

$$R_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} z_i^2}$$

where N is the number of points sampled on the surface and z_i is the surface height variation of the point $(\pm z)$ from the mean surface level.

Figure 4. 3D AFM topographic images of (A) CN and (B) PVDF membranes

When the surface consists of deep depressions and high peaks, high roughness parameters are expected (Idris et al., 2007). It was also observed from other study that less tightly packed nodules
created a rough surface indicated by the high roughness parameter values (Idris et al., 2007). The change in the roughness parameters is proportional to the change in the pore size (Bessieres et al., 1996). The values in Table 5 clearly shows that PVDF membrane with a smaller pore size than cellulose nitrate membrane has lower surface roughness values and the 3D AFM image also shows that PVDF membrane has lower peaks as compared to cellulose nitrate membrane.

Comparison between Figure 4A and Figure 4B indicates that the nodules are slightly merged and much lower peaks observed. In theory, this means that the roughness parameter decreases and it agrees well with the values presented in Table 5. It has been shown in other studies (Goodyer and Bunge, 2012; Idris et al., 2007) that high surface roughness on membranes indicates increased flux as well as decreased diffusion path length. A decrease in diffusion path length may imply less tortuous pores/channels, increasing the ease of diffusion and this is reflected in the diffusion coefficient values obtained in Table 6 where cellulose nitrate membrane has a higher average diffusion coefficient value than that of PVDF membrane. The surface topography of the scaffolds is not included in this paper due to their high height ranges on small scanned areas which are built for the atomic force microscope used in this study.

Table 5. Roughness parameters of Cellulose Nitrate and Polyvinylidene Fluoride (PVDF) membranes

<table>
<thead>
<tr>
<th>Membrane</th>
<th>R_a(nm)</th>
<th>R_{rms}(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF</td>
<td>164.3</td>
<td>208.6</td>
</tr>
<tr>
<td></td>
<td>144.9</td>
<td>181.2</td>
</tr>
<tr>
<td>Cellulose Nitrate</td>
<td>286.2</td>
<td>367.2</td>
</tr>
<tr>
<td></td>
<td>440.9</td>
<td>548.8</td>
</tr>
</tbody>
</table>

3.3. Glucose diffusion analysis

The basis for engaging different pore size and shapes tissue engineering membranes and scaffolds is to study if the varying morphological porous structures of the materials engaged have an effect on the diffusion of glucose. Typical curves for the temporal change in glucose concentration for both donor and receptor phases are shown in Figure 5. All other membranes show similar pattern as depicted in Figure 5. It can be clearly seen that this measurement gives a smooth concentration change. Table 6 summarizes the results from all these measurements. As expected, the effective diffusion coefficient is higher for a material with larger pore size. Figure 2e highlights the morphology of collagen scaffold that enables a relatively low resistance to diffusion of glucose molecules through the scaffold. The image clearly shows relatively straight channels and larger pores in comparison to other
scaffolds/membranes, thus providing less hindrance to glucose molecules diffusing through the path length. All other membranes/scaffolds’ compositions are much more intertwined, thus providing more resistance to glucose diffusion through the materials (Figure 2a-2d). This is reflected in the diffusion coefficient values shown in Table 6 where PVDF membrane with the smallest pore size of 0.1 µm has the smallest glucose diffusivity while collagen scaffold with 80 µm pore size has the largest glucose diffusivity. They show that the corresponding diffusion coefficient increases with increasing pore size of the material. This is true independent of the media used. This effect can be explained with the fact that the pore radius increases. However it must be noted that apart from pore size, other microscopic properties such as porosity and tortuosity also have an effect on diffusion. It is also apparent that the results for both water and CCM saturated membranes/scaffolds are significantly different. The glucose diffusion coefficients of membranes and scaffolds saturated with CCM are significantly reduced at a given temperature. This shows that other molecules present in CCM have significant influence with respect to diffusion.

It is worth pointing out that the diffusion coefficient for the materials increases from 27°C to 37°C. This is apparent for both water and CCM saturated membranes/scaffolds. This is due to a decrease in viscosity at a higher temperature. This is also due to the increased in kinetic energy of the glucose molecules at higher temperatures and the results can be seen in Table 6. However, it must be noted that the focus of this study is not to determine the influence of the temperature on the diffusion coefficient. Hence there were only two different temperatures used in the experiments in this work.

The diffusion coefficient in free media (liquid) calculated from Stokes-Einstein’s equation is comparable to what have been reported in literature, as shown in Table 7. As expected, glucose diffusion through membrane/scaffold is smaller than in the liquid which is reflected in the values shown in Table 6 except for collagen scaffolds both at 27°C and 37°C. This may be due to the homogeneous and relatively parallel pore structure as can be seen from the surface morphology of the collagen scaffold in Figure 2e. Although glucose was still able to diffuse through the membrane/scaffold, the diffusion coefficient is reduced compared to its value in free media. This may be due to several reasons. The diffusion length for glucose increases due to impermeable segments of the membrane; this is an obstruction or tortuosity effect (Westrin and Axelsson, 1991). The amount of water/CCM available for diffusion is also reduced to a fraction of the total volume due to the microstructure of the material. Hence, a much lowered value compared to the diffusivity of glucose in free media.
Figure 5. Diffusion cell experiment with 8 mg/ml glucose for both PCL and PLLA scaffolds saturated in CCM at 37°C

Table 6. Effective diffusion coefficients with standard deviations for glucose across membranes/scaffolds saturated in water and CCM

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturers’ pore size (µm)</th>
<th>Effective diffusion coefficient (m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water at 27°C</td>
</tr>
<tr>
<td>Membrane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVDF</td>
<td>0.1</td>
<td>1.20 ± 0.38 x 10^{-10}</td>
</tr>
<tr>
<td>CN</td>
<td>0.45</td>
<td>1.87 ± 0.50 x 10^{-10}</td>
</tr>
<tr>
<td>Scaffold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLLA</td>
<td>12-18</td>
<td>2.08 ± 0.20 x 10^{-10}</td>
</tr>
<tr>
<td>PCL</td>
<td>20-30</td>
<td>3.52 ± 2.35 x 10^{-10}</td>
</tr>
<tr>
<td>Collagen</td>
<td>80</td>
<td>9.59 ± 3.64 x 10^{-9}</td>
</tr>
</tbody>
</table>
Table 7. Comparison of the diffusion coefficient values for liquid only calculated from Stokes-Einstein’s equation and found in previous papers

<table>
<thead>
<tr>
<th></th>
<th>Calculated from Stokes-Einstein’s equation (Eq. 9)</th>
<th>Values reported in previous papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion coefficient in water at 27°C (m^2/s)</td>
<td>7.0 x 10^-10</td>
<td>5.4 x 10^-10 (Kleinstreuer and Agarwal, 1986)</td>
</tr>
<tr>
<td>Diffusion coefficient in water at 37°C (m^2/s)</td>
<td>9.6 x 10^-10</td>
<td>9.0 x 10^-10 (Buchwald, 2011)</td>
</tr>
<tr>
<td>Diffusion coefficient in CCM at 27°C (m^2/s)</td>
<td>4.6 x 10^-10</td>
<td>NA</td>
</tr>
<tr>
<td>Diffusion coefficient in CCM at 37°C (m^2/s)</td>
<td>5.7 x 10^-10</td>
<td>5.9 x 10^-10 (Provin et al., 2008)</td>
</tr>
</tbody>
</table>

Many papers have been published on the diffusion coefficients of glucose across various membranes and scaffolds at different temperatures. Papenburg et al. (2007) reported a value of 1.04 x 10^-10 m^2/s of glucose diffusion coefficient across PLLA scaffold saturated with water at 4°C while Shanbhag et al. (2005) obtained the glucose diffusion coefficient across inverted colloidal crystal (ICC) scaffold saturated in water at 25°C to be 2.7 x 10^-10 m^2/s. In other studies conducted by Wang et al. (2009) and Boss et al. (2012) at 37°C using hydroxypropyl chitosan (HPCTS) crosslinked with gelatin (GEL) and chondroitin sulphate (CS) scaffold and asymmetric alumina membrane, both saturated in water, glucose diffusion coefficient values were found to be 1.16 x 10^-10 m^2/s and 1.39 x 10^-10 m^2/s, respectively. These reported values are within the range of experimentally-deduced diffusion coefficients found in the present study (Table 6).

3.4. Relationship between porosity (ε) and tortuosity (τ)

As stated earlier, tortuous channels which are part of the pores of the membranes and scaffolds hinder the diffusion of the molecules (namely, glucose in this case) through the materials. The tortuosity of the molecule represents the average path length resulting from all resistances to diffusion over which the molecule travels during the diffusion through the material. The fluid that saturates the pores should hinder the molecular diffusion in different ways. Furthermore, as the resistance to diffusion changes due to change in temperature, the tortuosity values should also change.
The porosity is a macroscopic property of the material that represents the amount of void spaces in the material and pore size distribution although in reality it may be difficult to determine the subtle differences in the effects of these on the porosity values. Nevertheless, in an attempt to understand how the diffusional paths of the molecules change with the pore structures of the materials, we attempt to correlate the tortuosity values to porosity of the materials at different temperatures and for different fluids. In traditional literature of flow and transport in porous media, many such relationships can be found. Some of these relationships are reported for idealised porous material as shown in Table 9. It is visible from the image (Figure 2) that PCL scaffold benefits from larger pores and less tortuous channels which give a lower tortuosity value compared to other membranes/scaffolds. This is depicted in Table 8 where PCL scaffold gives a tortuosity value of 2.5 and consequently a higher diffusion coefficient (Table 6) in comparison to other materials. PVDF membrane, with the smallest pore size, gives the largest tortuosity value of 5.1 (Table 8) and the lowest diffusion coefficient value (Table 6). One can also observe from Table 8 that the tortuosities vary with temperature and this is consistent with what have been found in several studies before (e.g., Gao et al., 2014; Sadighi et al., 2013; Sharma and Chellam, 2005).

Figure 6 shows the plot of porosity-tortuosity relations between experimental and empirical results. As expected, both results are not comparable as the approaches in equation were based on a specific idealised model of a porous medium (Sun et al., 2013) while the experimental results were collated from different membranes and scaffolds of different pore size and microstructure.

Table 8. Experimentally-calculated porosity and tortuosity for all materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturers' pore size (µm)</th>
<th>Porosity (%)</th>
<th>Tortuosity (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water at 27°C</td>
</tr>
<tr>
<td>Membrane</td>
<td>PVDF CN</td>
<td>0.1</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>64</td>
</tr>
<tr>
<td>Scaffold</td>
<td>PLLA</td>
<td>12-18</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>PCL</td>
<td>20-30</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Collagen</td>
<td>80</td>
<td>72</td>
</tr>
</tbody>
</table>
Figure 6. Comparison of porosity-tortuosity relations for all materials which are determined from the experiments in this work and four models of ideal porous material. The equations for the relationship between tortuosity and porosity for ideal porous media saturated with water (Eq. 12 – Eq. 15) are shown in Table 9.

Table 9. Porosity-tortuosity relations for ideal porous materials saturated with water

<table>
<thead>
<tr>
<th>Equation number</th>
<th>Relation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>$\tau = 1 - 0.41 \ln \phi$</td>
<td>Comiti and Renaud (1989)</td>
</tr>
<tr>
<td>13</td>
<td>$\tau = 1 - 0.49 \ln \phi$</td>
<td>Mauret and Renaud (1997); Barrande et al. (2007)</td>
</tr>
<tr>
<td>14</td>
<td>$\tau = 1/\phi^{0.33}$</td>
<td>Bear (1972); Dullien (1975)</td>
</tr>
<tr>
<td>15</td>
<td>$\tau = 1 + 0.8(1 - \phi)$</td>
<td>Koponen et al. (1996)</td>
</tr>
</tbody>
</table>

4. Conclusion

A diffusion cell has been constructed to measure the diffusion coefficient of glucose across varying pore size and shapes tissue engineering membranes and scaffolds which are saturated with water and CCM. The rationale behind selecting different porous structure of membranes and scaffolds in this
study was to observe how the different morphological porous structure of the materials investigated might have an effect on the glucose diffusion. The results showed the glucose diffusion coefficients for materials saturated with CCM are significantly reduced at a given temperature. This may be due to the multi-components that make up CCM and what we obtained is therefore a lumped effect from a number of inter-related phenomena. A similar trend was observed for both diffusion in water and CCM where a higher diffusion coefficient was evident with larger pores due to increased pore size.

SEM enabled visual images of materials investigated including the morphology, porosity, pore size and tortuosity. Both porosity and tortuosity were evaluated in this study and based on our results, a low tortuosity value was found for the PCL scaffold used in this study and this is true independent of the media used. The low tortuosity value coupled with a higher diffusion rate compared to other materials were due to less hindrance to mass transfer and less tortuous channels. Varying the glucose concentration for diffusivity measurements and determining the mass transfer rate with the presence of biological cells (e.g., stem or epithelial cells; adherent or suspended cells) in the scaffolds will be valuable for future work.

Acknowledgment

The authors gratefully acknowledge a PhD studentship to Hazwani Suhaimi by Brunei Government which made this work possible. Department of Chemical Engineering, Loughborough University is acknowledged for its support to Shuai Wang’s PhD work.

References

Bear J (1972) Dynamics of fluids in porous media, American Elsevier, New York

Provin C, Takano K,

Yui K, Yamazaki N, Funazukuri T (2013) Infinite dilution binary diffusion coefficients for compounds derived from biomass in water at 0.1 MPa and temperatures from (298.2 to 353.2) K, Journal of Chemical & Engineering Data, Vol. 58, 183-186

Appendix

Figure A1. SEM micrograph of PCL scaffold and its fibre diameter distribution (supplied by the manufacturer and included in the paper with their consent)

Figure A2. SEM micrograph of PLLA scaffold and its fibre diameter distribution (supplied by the manufacturer and included in the paper with their consent)