Loughborough University
Browse
Thesis-2014-Fouda.pdf (9.53 MB)

Experimental and computational study of multiphase flow in dry powder inhalers

Download (9.53 MB)
thesis
posted on 2015-01-05, 08:54 authored by Yahia M. Fouda
Dry Powder Inhalers (DPIs) have great potential in pulmonary drug delivery; the granular powder, used as active ingredient in DPIs, is ozone friendly and the operation of DPIs ensures coordination between dose release and patient inhalation. However, the powder fluidisation mechanisms are poorly understood which leads to low efficiency of DPIs with 10-35 % of the dose reaching the site of action. The main aim of this thesis is to study the hydrodynamics of powder fluidisation in DPIs, using experimental and computational approaches. An experimental test rig was developed to replicate the process of transient powder fluidisation in an impinging air jet configuration. The powder fluidisation chamber was scaled up resulting in a two dimensional particle flow prototype, which encloses 3.85 mm glass beads. Using optical image processing techniques, individual particles were detected and tracked throughout the experimental time and domain. By varying the air flow rate to the test section, two particle fluidisation regimes were studied. In the first fluidisation regime, the particle bed was fully fluidised in less than 0.25 s due to the strong air jet. Particle velocity vectors showed strong convective flow with no evidence of diffusive motion triggered by inter-particle collisions. In the second fluidisation regime, the particle flow experienced two stages. The first stage showed strong convective flow similar to the first fluidisation regime, while the second stage showed more complex particle flow with collisional and convective flow taking place on the same time and length scales. The continuum Two Fluid Model (TFM) was used to solve the governing equations of the coupled granular and gas phases for the same experimental conditions. Sub-models for particle-gas and particle-particle interactions were used to complete the model description. Inter-particle interactions were resolved using models based on the kinetic theory of granular flow for the rapid flow regime and models based on soil mechanics for the frictional regime. Numerical predictions of the first fluidisation regime showed that the model should incorporate particle-wall friction and minimise diffusion, simultaneously. Ignoring friction resulted in fluidisation timing mismatch, while increasing the diffusion resulted in homogenous particle fluidisation in contrast to the aggregative convective fluidisation noticed in the experiments. Numerical predictions of the second fluidisation regime agreed well with the experiments for the convection dominated first stage of flow up to 0.3 s. However, later stages of complex particle flow showed qualitative discrepancies between the experimental and the computational approaches suggesting that current continuum granular models need further development. The findings of the present thesis have contributed towards better understanding of the mechanics of particle fluidisation and dense multiphase flow in DPI in particular, and particle bed fluidisation using impinging air jet in general. The use of TFM for predicting high speed convective granular flows, such as those in DPIs, is promising. Further studies are needed to investigate the form of particle-particle interactions within continuum granular flow models.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Yahia M. Fouda

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en